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Abstract

We discuss specific, recent advances in the analysis of an experiment to test the
Equivalence Principle (EP) in free fall.  A differential accelerometer detector with two
proof masses of different materials free falls inside an evacuated capsule previously
released from a stratospheric balloon.  The detector spins slowly about its horizontal axis
during the fall.  An EP violation signal (if present) will manifest itself at the rotational
frequency of the detector.  The detector operates in a quiet environment as it slowly
moves with respect to the co-moving capsule.  There are, however, gravitational and
dynamical noise contributions that need to be evaluated in order to define key
requirements for this experiment.  Specifically, higher-order mass moments of the
capsule contribute errors to the differential acceleration output with components at the
spin frequency which need to be minimized.  The dynamics of the free falling detector (in
its present design) has been simulated in order to estimate the tolerable errors at release
which, in turn, define the release mechanism requirements.  Moreover, the study of the
higher-order mass moments for a worst-case position of the detector package relative to
the cryostat has led to the definition of requirements on the shape and size of the proof
masses.

Introduction

The scientific goal of the experiment is to test the equality of gravitational and inertial
mass (i.e., to test the Principle of Equivalence) by measuring the independence of the rate
of fall of bodies from their mass and composition.  The experiment is accomplished by
measuring the relative displacement (or equivalently acceleration) of two falling bodies
of different materials which are the proof masses of a differential accelerometer.  The
experiment goal is to measure the Eötvös ratio dg/g (differential acceleration/common
acceleration) with an accuracy about two orders of magnitude better than presently
achievedi,ii.  The experiment is a null experiment in which a relative displacement
different from zero, at the spin frequency, between the proof masses will indicate a
violation of the Equivalence Principle.
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In summary, the experiment  consists in taking differential acceleration measurements
with a high-sensitivity detector (the sensor) during free fall conditions lasting up to 28 s
in a disturbance-free acceleration environment.  A capsule is first released from the
balloon at an altitude of typically 40 km and the detector is released from the top of the
capsule immediately afterwards.  During the measurement phase, the sensor free falls
inside a 2-meters-long (in the vertical direction) evacuated cryostat (contained inside the
capsule) that is falling simultaneously in the rarefied atmosphereiii.

By falling in vacuum inside a co-moving capsule, the noise acceleration level can be
kept to a negligible level while the signal strength in free fall, i.e., the full-strength
Earth’s gravity, is increased by 3 orders of magnitude with respect to the signals available
to EP experiments conducted on the ground.  The free fall technique, therefore, combines
some of the advantages of the space-based tests with the accessibility and reusability of
ground experiments.

Figure 1 Schematic of capsule with detector attached (before release) to the spin up
system

The detector has two sensing masses of different materials with their centers of mass
(CM) as coincident as possible in order to reduce the effect of gravity gradients.  The two
masses are constrained in a way that they can move at low frequency along one axis (i.e.,
the sensitive axis that is perpendicular to the symmetry axis of the sensor) while they are
rigidly constrained about the other two axes.  The displacement of each sensing mass
along the sensitive axis is detected by capacitive pickups which are parts of a
measurement bridge.

Detector before
release

Cryostat

Spin system

Sensitive axis
(rotates with detector)
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One key feature is that the detector is spun before release about the symmetry axis
that lies on the horizontal plane.  The rotation provides the modulation (at the spin
frequency) of any possible violation signal.  Moreover, the spin provides gyroscopic
stabilization of the detector during the fall and separates the signal from key noise
components generated by the detector dynamics.

Frequency separation between the signal and the largest noise components is essential
to the success of the experiment.  The noise components that, unavoidably, appear at the
signal frequency need to have a strength well below the detector threshold sensitivity.  In
the following, we analyze the detector dynamics to identify the frequencies of noise
components that can be separated from the signal thanks to the appropriate selection of
the inertia characteristics of the detector package.  We also study the higher-order mass
moments generated by the capsule mass and acting on the sensing masses.  The higher-
order mass moments contain some components at the signal frequency and care must be
taken in designing the sensing masses in order to reduce the strength of those components
to a negligible level.

Analysis of Higher-order Mass Moments

Overview

The sensing mass (test body), falling inside the capsule, is subjected to non-negligible
gravitational attraction by the capsule. The higher-order gravitational potential plays a
key role because of the elimination of the zero-order potential due to the Equivalence
Principle. The model of perturbing gravitational mass consists of a spinning test body
inside a capsule that is a hollow cylinder covered with flat caps. The test body is released
at the symmetry axis of the cylinder, and deviates from the axis during its fall.  Our goal
is to compute the gravitational force and torque acting in the neighborhood of the fall
trajectory. The fact that both the test mass and the capsule are closed finite bodies,
increases the complexity of the problem.  We are mostly concerned here with the
harmonics of the force/torque at the modulation frequency as seen in the reference frame
of the detector. In other words, our model should evaluate the force/torque in the rotating
body frame of the sensing mass. For that purpose we built a semi-analytical model that
can handle any configuration of test mass as well as any additional mass attached to the
distributed mass of the capsule. Moreover, we exploited the fact that the size of the test
mass is smaller than the cylinder radius to derive an asymptotic analytical solution.

There are at least three ways to approach the computation of the gravitational
attraction between the capsule and the test body.  The first approach is to compute the
force between each capsule mass element and a test body mass element, and to perform a
double summation on these forces. If N is the number of capsule mass elements, and

BN  is the number of test body mass elements, then the cardinality of the computation
(that drives the computational load) is BNN ƒ . As it will become apparent later on, the
mass discretization resolution required to the test body is very demanding and,
consequently, the cardinality becomes prohibitively high with this approach. The second
approach is a double integration over the bodies. The drawback of the first approach is
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the heavy computational effort, especially if the computation is needed as an online
computation in a dynamical process. The weakness of the second approach is in the
cumbersome analytical computation. The integration will require an asymptotic series
expansion of complicated functions and asymptotic series introduce a truncation error
into the computation.  We adopted a third approach for the gravitational model.

We consider the capsule as a discrete ensemble of lumped mass, where the resultant
force and torque acting on the test body are the cumulative force and torque due to the
summation of all the capsule mass elements. The gravitational potential of the test body
is expanded according to its increasing-order inertia characteristics.  In other words, the
interaction is between a finite body (the test mass) and a point mass. This approach is the
result of a tradeoff between the previous approaches and its cardinality is N . The main
advantage is the flexibility of modeling any capsule shape and the strongly reduced
computational load.

The purpose of the following computation is to derive a closed-form analytical
expressions, for the force and torque acting on the spinning test mass due to a capsule
mass element.

Gravitational Model

The gravitational potential between finite size bodies, is:

o
dM

o B
r

B
dM

GV Ú Ú

¬ ¬
-= (1)

where 

† 

¬B  is the test body (proof mass), and 

† 

¬0  represents the attracting bodies, namely,
the capsule or any other perturbing body.

For the purpose of simplicity we will proceed with a formulation of the test body and
a single element of the attracting mass, 

† 
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of the test body and 
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dMo as shown in Fig. 2.
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Figure 2  Gravitation model for test mass and outer attracting bodies

Assuming a sufficient discretization, the total force acting on the test body due to all

external mass elements is 
  

† 

r 
F B @ —V (Mi )

i=1

N
Â , where N  is the number of external mass

elements. We first erect the following reference frames. The capsule frame, denoted by
},,{ ZYX  is attached to the capsule. YX , lie on the equatorial plane and have an arbitrary

azimuth while Z coincides with the symmetry axis of the capsule/cylinder. The test body
frame, denoted by },,{ zyx , is attached to the test mass. The gravitational potential will be
expressed in body frame. The inertia coefficients of the body are constant in this frame.

The derivation consists of the following steps: (1) substituting the inverse radius
approximation into the potential; and (2) carrying out the integration. The position
vectors in body frame are as follows:

RenemelR zyx )( ++=
r

 and zyx ezeyex ++=r
r

where },,{ zyx eee are body unit vectors, and },,{ nml are direction cosines between R
r

 and
the body axes.

The resulting potential is a summation over all mass elements Mi (only the first 4
terms are shown for the sake of brevity):
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where 
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j
x pyqzr are the inertia integrals defined as:
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j
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Ú (3)

Expressions for the forces (shown in the following) are obtained by derivation of the
potential.  Torques (not shown here) are obtained by integrating over the proof mass the
torque acting on a mass element of the body.
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Note that the force has the following order of magnitude:
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Minimizing the higher-order effects

The goal is to minimize the gravitational forces acting on the test mass.  The force
equations reveal that the dominant term is the term corresponding to the second-order
inertia.  The offset term (dipole) is equal to zero for a reference frame centered at the
body CM (see also later on).  The direct way to minimize the forces is to require equal
second-order moments of inertia.  Then, the residual forces are due to mass imperfections
and to higher-order (and smaller strength) inertia integrals. The purpose of the following
discussion is to explore the effect of each term for a spinning test body.

First, we evaluate the mixed-inertia terms due to an imperfection. We assume that the
imperfection is due to a disturbance in mass and/or length. The nominal test body could
be a perfect cylinder, with radius RB and length LB.  In order to minimize the force we
require that 

† 

IXX = IYY = IZZ . This constraint translates into a given aspect ratio of the
cylinder as follows: 

† 

LB = 3 RB . Given the mass density, the mass or the size of the
cylinder are now functions of a single free parameter. For example, given the mass, MB,

and the density, 

† 

rB , the length is: 

† 
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3MB
p rB
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1
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Next, we consider the effect of the spin.  The test body is spinning about its x-axis
with a frequency that will be regarded as a fundamental frequency, or P1 (period one).
We are primarily concerned with P1 because it is the frequency of the measured signal.
For this purpose, we will analyze Fy by substituting the direction cosines, shown below,
into the force expression.

The periodicity in time is introduced through the direction cosines that represent the
orientation of the body frame relative to the capsule frame.  The transformation between
the two is:
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(5)

The resulting direction cosines are:
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† 

l =
x
R

=
X
R

 (independent  of  q)

m =
y
R

=
Y cq + Z sq

R

n =
z
R

=
-Y sq + Z cq

R

(6)

l  becomes a cyclic function only if the body deviates from the X-axis.

Figure 3  Reference frames

We compute the forces and torques acting on an imperfect proof mass placed at the
worst location expected inside the capsule for conservative value of the wind shear (that
is a point at –0.5 m below the capsule equator and 0.1 m off the centerline.  The capsule
consists of a hollow cylinder, covered by two flat caps with a total mass of 500 kg.  The
test body mass is 1 kg with sizes: 

† 

RB = 0.0412m  and 

† 

LB = 0.0713m .  The geometrical
and mass inhomogeneity errors, based on realistic assumptions, are: dL/L = 10-4 and
dM/M = 10-4.

In the following plots (Figs. 4 and 5) we also show non-zero dipole terms (first-order
inertia) to represent the fact the CM of one proof mass does not coincide with the CM of
the other, thereby originating a non-null (gravity gradient) term when the difference of
accelerations is taken between the two proof masses.
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Figure 4  Ordered forces and spectra at expected worst location within the capsule

Figure 5  Ordered torques and spectra at expected worst location within the capsule
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Similarity analysis

Another important issue is the role played by the test body mass and size. For this
purpose we perform a similarity analysis, as shown in the following. We have formulated
the gravitational potential as an asymptotic series in 

† 

1/Rn . Each term in the series has an
inertial tensor of degree n - 1.  For example, the first term is of order n = 1 and its inertia
tensor is of order 0 (the test body mass).  The third term is of degree n = 3 and its inertia
tensor is of order 2. This non-uniformity, however, introduces a problem when one
computes the forces for a particular test mass and wants to deduct the forces for a
different size of test mass. Mathematically speaking, if F(MB1) and F(MB2) are the forces
due to two different test masses, then the ratio between the forces is not a homogeneous
function, that is, F(MB1)/F(MB2) ≠ g((MB1/MB2)m) where g is a function and m is the degree
of the homogeneity. Note however that each term of the series is homogeneous by itself.
For example, the first term is homogeneous of degree one, that is, the ratio between
forces equals the ratio between the masses.

We will distinguish between two situations. The first situation is when the difference
in masses is due to a different density. Since the forces are homogeneous of degree one in
density, the ratio between the forces is equal to the ratio between the masses and the
acceleration is constant.  In a more interesting situation the density is the same, and the
different mass is due to different sizes. In this case we need to apply a different similarity
to each term.  Let L and M be scaling factors for the length and the mass, respectively. If
the density of different test bodies is the same, then 

† 

LµM1/3.  Let m = n - 1 be the order
of the moment of inertia, then its similarity dimension is 

† 

Lm M , that is, 

† 

M1+m /3 or 

† 

Lm+3.
The acceleration similarity is 

† 

M m /3  or 

† 

Lm . The following table summarizes the
similarity dimension for each term in the potential.

Table 1 Similarity relations for the gravitational potential term

Potential Order
    n; 1/Rn

 Inertia Order
   m = n - 1

    Inertia
  Similarity

 Acceleration
  Similarity

          1         0         M    (L3)      1       (1)
          2         1         M4/3  (L4)      M1/3  (L)
          3         2         M5/3  (L5)      M2/3  (L2)
          4         3        M2    (L6)      M     (L3)
          5         4        M7/3  (L7)      M4/3  (L4)

To summarize, given the force (or the acceleration) on a particular test body, we can
deduct the force (acceleration) on another geometrically-scaled test mass. The
acceleration ratio (of two different test masses with the same density) versus similarity
dimensions (i.e., mass and length) is illustrated in Fig. 5.
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Figure 6  Scaling of test mass acceleration for masses with same density

The maximum potential order considered in our analysis is the hexadecapole (n = 5)
which involves the fourth-order inertia integrals.  We computed numerically the forces
associated with the hexadecapole for a body with equal second-order inertia integrals (in
order to minimize the quadrupole term).  The results show that, at the worst expected
location inside the capsule, the maximum acceleration associated with the hexadecapole
term for a 1-kg proof mass is less than 10-16 g.  In other words, for the accuracy goal of
this experiment there is no need for belted cylindersiv (which would reduce the
hexadecapole component even further).  Proof masses with equal second-order inertia
integrals (or alternatively moments of inertia), construction accuracy of order ten
microns, and sizes smaller than about 10 cm are sufficient to make the contributions of all
the higher-order gravity terms negligible.

Detector Dynamics

The instrument package dynamics also affects the differential accelerometer output.
We derive the differential equations of motion for the detector in free fall (without
gravity perturbations for the time being) and carry out numerical integrations for cases of
interest.  Those cases are associated with non-null offset positions of the centers of mass
of the proof masses with respect to the CM of the instrument package and initial
rotational velocity errors orthogonal to the spin velocity in order to evaluate the influence
of those parameters on the differential output of the accelerometer.

13
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Equations of motion

The sensor in its current, preliminary design (see Fig. 7) is composed of two sensing
masses (A and B) having the CMs as coincident as possible with the CM of the external
case. One proof mass has a dumbbell shape, while the other is a hollow cylinder. These
two masses are constrained to the case C by means of elastic springs and they can pivot
about an axis that is parallel to the axis of symmetry of the sensor. The whole detector is
spun about the symmetry axis x.

Figure 7  Schematic of three-body sensor

The motion of the sensor is essentially a rotation of the sensing masses about the
pivot axis.  The translational motion of the sensing masses, which depends on the high
lateral stiffness of the springs is much smaller than the rotational motion. A rotation of
the proof mass causes a variation of the distance between the sensing mass and the
external case that changes the output capacitance.

Each body is modeled with six degrees of freedom, i.e., three translations and three
rotations defined by Euler’s angles.  Elastic forces and torques are applied to each proof
mass at the attachment points of the constraining springs. The transformation matrices
have been written for each body in order to develop the equations of motion for the
different bodies.  The body coordinate systems are centered in the body’s geometrical
center, and are fixed with each body. The position of the CM is defined by three
coordinates (xCMA, yCMA, zCMA for body A) in the body reference frame.  Each body frame
has the x axis along the axis of symmetry which is also the spin axis. The y and z axes are
radial axes that rotate with the body. The y axis is the sensitive axis of the accelerometer.

Translational accelerations

In the following we describe the procedure for deriving the equations of motion of
one proof mass (A).  The extension to a second proof mass is straight forward v.  The CM
vector in each body’s reference frame is:

A BC spin axis

pivot axis

z

x
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Body A: {rA} = {xCMA  yCMA  zCMA}T

Body C: {rC} = {xCMC  yCMC  zCMC}T

The translational acceleration expressed in the inertial reference is obtained by using
the formula:

† 

aA{ } = ˙ ̇ R A0[ ] ⋅ rA{ } + 2 ˙ R A0[ ] ⋅ ˙ r A{ } + RA0[ ] ⋅ ˙ ̇ r A{ } + ˙ ̇ R A
0{ } (7)

where {aA} is the acceleration of body A in the inertial frame, [RA0] is the rotation matrix
from A to inertial frame, {rA} is the coordinates vector of body A CM in the A frame,
{RA

0} is the translation vector expressed in inertial coordinates, and (.) indicates matrix
multiplication.  Same-structure equations are used for the additional bodies.

Elastic Forces

To evaluate the elastic forces we define first the points where the springs are attached to
each body. The position of these points are expressed in body frame. The distance
between connected points is then computed from the actual position during the motion,
projected in the A frame, and multiplied by the stiffness vector {kxA, kyA, kzA}. By
following this procedure, it is possible to assign different stiffness to each degree of
freedom.  The elastic forces are then projected in the inertial coordinate system as follows

{F1A} = [RA0] . ([K] . ({pA1} - [T0A].{TC0.pC1} - {l1}))

{F2A} = [RA0] . ([K] . ({pA2} - [T0A].{TC0.pC2} – {l2})) (8)

{FA} = {F1A} + {F2A}

where [K] is the spring stiffness matrix, {pA} and {pC} are the vectors that define the
positions of the spring attachment points, and {l1} and {l2} are the natural lengths of the
springs.  The operator “T0A.x” indicates the combination of a multiplication by the
rotation matrix [R0A] applied to the vector {x} plus the translation of the vector {RA

A}
which yields:

{T0A.x} = [R0A].{x} + {RA
A}

The expression T0A.(TC0.pC1) projects the coordinates of the point pC1 (expressed in the
body C frame) onto the body A coordinate system.  Subsequently, the force is projected
onto the inertial frame using the [RA0] matrix.  A similar procedure is used to evaluate the
forces acting on any other body pairs.

The equations of translational motion for the two bodies A and C finally yield :

mA {aA} – {FA} = 0
(9)

mC {aC} – {FC} = 0

15
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where mA and mC are the masses of body A and C, aA and aC the accelerations, and FA and
FC the elastic forces:

{FA} = {F1A} + {F2A}

{FC} = {F1C} + {F2C}

The subscripts 1 and 2 identify the two springs that connect body A to C.

Rotational accelerations:

The angular velocity of each body is computed by using the rotation matrices that
transform the coordinate system from the inertial to the body frame and, conversely,
through the opposite transformation.  The rotational velocity matrices of bodies A and C
are derived by using the Cartan’s formula as follows:

† 

wA[ ] = R0A[ ] ⋅ ˙ R A0[ ]

wC[ ] = R0C[ ] ⋅ ˙ R C0[ ]
(10)

where [R0A] and [RA0] are the rotation matrices from the inertial coordinate system
(denoted by 0) to the body reference frame of A and vice-versa.  [R0C] and [RC0] are the
correspondent matrices for body C. It should be noted that the former expression lead to
the skew symmetric matrix of the angular velocity from which the components of the
angular velocity vector {wA} can be readily extracted.

Elastic torques

The elastic torques acting on each body are computed by using the expressions for the
locations of the attachment points and elastic forces previously defined.  The expressions
of the torques in the respective body reference frames are as follows:

{TA} = {pA1} x ([R0A] . {F1A}) + {pA2} x ([R0A] . {F2A})
(11)

{TC} = {pC1} x ([R0C] .{F1C}) + {pC2} x ([R0C] . {F2C})

where x indicates the external product of vectors.

Invoking Euler’s equations, the rotational equations of motion yield:

† 

IA[ ] ⋅ ˙ w A{ } + wA[ ] ⋅ IA[ ] ⋅ wA{ } - TA{ } = 0

IC[ ] ⋅ ˙ w C{ } + wC[ ] ⋅ IC[ ] ⋅ wC{ } - TC{ } = 0
(12)

where {wA} and [wC] represent the angular velocity vector and matrix, respectively, for
body A (and similarly for body C).  [IA] and [IC] are the inertia matrices for body A and C
which, assuming principal axes, have diagonal forms. The equations of motion for the
complete three-body detector are evaluated in the same way as for the two-body example
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used previously leading to 3 vector equations for the rotational dynamics and 3 equations
for the translational dynamics.

Numerical cases

Figure 8 shows the configuration of the 3-body sensor utilized for the numerical cases
and the positions of the attachment points for the three-body sensor.

Figure 8  Attachment points of the proof masses

The points pCA1, pCA2, pCB1 and pCB2 are the points of the external body C connected to
the points pA1, pA2, pB1, pB2, respectively. In this detector configuration, four springs are
used to connect the two bodies to the external case (i.e., two springs per proof mass).
The numerical value adopted for the numerical case shown in the following are as
follows:

mA = 1 kg, mB = 1 kg, mC = 30 kg;
IAx = IAy = IAz = 0.17 kg-m2; IBx = IBy = IBz = 0.17 kg-m2;
ICx = 0.95 kg-m2, ICy = ICz = 1.46 kg-m2;
kA1x = 45000 N/m, kA1y = kA1z = 35000 N/m;
kA2x = 45000 N/m, kA2y = kA2z = 35000 N/m;
kAqx = 61.68 Nm/rad, kAqy = kAqz = 1000 Nm/rad;
kB1x = 45000 N/m, kB1y = kB1z = 35000 N/m;
kB2x = 45000 N/m, kB2y = kB2z = 35000 N/m;
kBqx = 61.68 Nm/rad, kBqy = kBqz = 1000 Nm/rad.

The initial conditions at release are: spin rate wx = 1.885 rad/s (0.3 Hz), angular error
at release wy = 10-2 rad/s; and initial nutation angle = 0.  The CM offset errors are (with
the reference frame placed at the geometrical center of body C):

xCMA = 10-6 m, yCMA = 0, zCMA = 10-6 m;
xCMB = 0, yCMB = 0, zCMB = 0;
xCMC = 0, yCMC = 0, zCMC = 0

A BC x

z

pCB2

pCA1
pA1 pB2pCA2

pA2pB1
pCB1
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From the point of view of the rigid-body dynamics, a detector with the above inertia
characteristics is a minor-inertia-axis spinner that exhibits a prograde precession.

The natural elastic frequency of the detector are shown in Figure 9.  The lowest
frequency (at 2.999 Hz) corresponds to the differential torsional mode of the proof
masses while the next one (at 3.486 Hz) corresponds to the common-mode torsional
frequency.

† 

2.999 42.108
3.486 42.554
4.349 43.489
4.399 44.075

26.779 48.344
27.217 50.062
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Figure 9  Natural frequencies

Figure 10  yA - yB (m) in body frame vs. time (s)

Torsional
differential mode

Torsional
common mode
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Figure 11  FFT of yA - yB (m) vs. frequency (Hz)

Figure 12  Zoom of yA - yB (m) FFT vs. frequency (Hz)

Figure 10 is a time profile of the differential displacement between the two proof
masses, that is measured by the capacitive pickups.  The displacement is then converted
into acceleration through the accelerometer’s transfer function.  The initial conditions
adopted for release are conservatively large and no post-release phase with oscillation
damping was included in this simulation leading to conservative values of the differential
displacements.  Here we are mostly concerned with the frequency content of the
differential displacement which is shown in Fig. 11 and, with an expanded view, in Fig.
12.  Figure 11 shows the separation between the oscillations related to the rigid-body
dynamics of the instrument package (at low frequency) and the first elastic frequency of
the accelerometer.  More importantly, Fig. 12 shows that the precession frequency can be
chosen so that the harmonics related to the rigid-body dynamics do not overlap with the
spin frequency (which is also the signal frequency).

Spin frequency
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The precession of the instrument package will be caused by an angular rate error
(perpendicular to the spin axis) at release or an imperfect inertial balancing of the
instrument package.  Effects of the precession are detected by the accelerometer if the
centers of mass of the proof masses do not coincide with the center of mass of the
instrument package.  If we choose the moments of inertia of the instrument package so
that the precession frequency is non-commensurate with the spin frequency, then there
are no dynamics-related harmonics at the signal frequency.  Consequently, we must
simply guarantee that the precession-related accelerations are smaller than the end-of
scale of the detector.  These conditions are met for a prograde precession (minor-axis
spinner), angular rate errors at release smaller than about 0.1 deg/s, and realistic
construction accuracies of the detector.

Conclusions

Our analysis concludes that the gravitational perturbations, acting on the test masses
and due to the capsule gravity, can be reduced to within the limit required by the
experiment if the test mass design abides to simple rules as follows:

a) The test masses must be smaller than a characteristic size of about 10 cm;
b) The second order principal moments of inertia must be equal within construction

tolerances (dL/L < 10-4);
c) The density uniformity of the test mass must be within 0.01% (dM/M < 10-4).

There is no need for belted cylinders (used in the STEP satellite experiment) for the
accuracy goal of our experiment.

With reference to the detector free-fall dynamics, the ratio of the moments of inertia
of the instrument package must be such that the body precession frequency is non-
commensurate with the spin frequency.  Similarly, none of the elastic frequencies of the
detector must overlap with the spin frequency.  These conditions guarantee that no
acceleration components related to the detector elastic and rigid-body dynamics overlap
with the signal frequency.
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Measurement of the Aberration of Gravity Using Jupiter's Motion

Edward B. Fomalont
National Radio Astronomy Observatory

On September 8, 2002 Jupiter passed within 3.7' of the bright radio source, J0842+1835.
The deflection predicted by General Relativity (GR) of this source at closest approach
contains two major terms: an outward radial deflection from Jupiter of 1190 µarcsec, and
a deflection of 51 µarcsec associated with the aberration of gravity.  We used the Very
Long Baseline Array with the Effelsberg telescope to measure the position of
J0842+1835 with respect to two quasars a few degrees away during the period of
September 4-12.  With the use of two quasars on opposites sides of the radio source, we
removed most of the tropospheric delay variations, and obtained the deflection of
J0842+1835 on September 8 to an accuracy <10 µarcsec.  The aberrational part of the
deflection that we measured is 0.98 +/- 0.19 times that predicted by GR.  The speed of
gravity associated with the measured aberration of the gravitational field of Jupiter is
(1.06 +\- 0.21) times the speed of light.
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Science Goals of the Primary Atomic Reference Clock in Space
(PARCS) Experiment.

N. ASHBY

Department of Physics, University of Colorado, Boulder, CO 80309-0390 USA

E-mail: n ashby@mobek.colorado.edu

The PARCS (Primary Atomic Reference Clock in Space) experiment will use
a laser-cooled Cesium atomic clock operating in the microgravity environment
aboard the International Space Station (ISS) to provide both advanced tests of
gravitational theory and to demonstrate a new cold-atom clock technology for
space. PARCS is a joint project of the National Institute of Standards and Tech-
nology (NIST), NASA’s Jet Propulsion Laboratory (JPL), and the University of
Colorado (CU). This paper concentrates on the scientific goals of the PARCS mis-
sion. The microgravity space environment allows laser-cooled Cs atoms to have
Ramsey times in excess of those feasible on Earth, resulting in improved clock per-
formance. Clock stabilities of 5× 10−14 at one second, and accuracies better than
10−16 are projected. The relativistic frequency shift should be measureable at least
35 times better than the previous best, Gravity Probe A.[1] PARCS is scheduled for
launch in 2007 and will probably fly with the Stanford Superconducting Microwave
Oscillator (SUMO), which will allow a Kennedy-Thorndike type experiment with
an improvement of about three orders of magnitude compared to previous best
results. PARCS will also provide a much-improved realization of the second, and
a stable time reference in space. Significant improvements in testing fundamental
assumptions of relativity theory, and in testing non-metric theories of gravity, are
expected.

1 Introduction

The PARCS laser-cooled atomic clock takes advantage of the microgravity en-
vironment of space to achieve improvements in clock performance. We describe
here the scientific and technical measurements to be performed with PARCS.

1.1 Gravitational Measurements

Relativity predicts how clocks behave while moving or in varying gravitational
fields. The PARCS clock will be used to test such predictions. Improvements
in relativistic frequency shift measurements by nearly two orders of magnitude,
and improvements in Kennedy-Thorndike type tests at an even higher level are
expected. Earth-based tests of Local Position Invariance (LPI) have recently
improved significantly.[2] Space-based tests of LPI therefore no longer offer
important improvements, but can complement such earth-based tests with
clocks of different structures, in a different environment. These measurements

1
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provide a basis for possible future gravitational experiments in highly elliptical
earth orbit or for a solar probe.

1.2 Other Technical Measurements

The PARCS clock will realize the second’s definition approximately ten times
more accurately than that now done on earth. It can provide accurate time
interval and frequency signals to laboratories worldwide, thus contributing to
the coordination of clocks maintained by standards laboratories around the
world. Since the ISS will be above the troposphere and part of the ionosphere,
propagation-delay variations for signals traveling between GPS satellites and
the ISS will be smaller than those observed on earth. PARCS provides an op-
portunity to study the clocks, ephemerides, and propagation delay mechanisms
in GPS with high precision.

1.3 Atomic Clocks in Microgravity

Earth-based clocks using neutral atoms are limited in accuracy by strong grav-
itational forces which pull atoms downward out of the apparatus and limit the
interaction time over which their resonance frequency can be measured. On
earth this time limit, attained in laser-cooled cesium-fountain clocks, is about
one second.[3] In the ISS microgravity environment, atom-observation time
will be increased by an order of magnitude or more. The resonance linewidth
decreases as observation time increases, which simplifies locating the center
of the resonance. Many systematic frequency shifts scale as the observation
time, so accuracy is improved. We project a fractional frequency uncertainty
of 5 × 10−17 (for an averaging time of the order of 10 days) for PARCS. The
best earth-based atomic clocks have an uncertainty of order 1 × 10−15 [3,4,5].

The best configuration for a very slow-atom clock in space is the same
as that of the traditional atomic-beam clock, but the space clock will involve
balls of laser-cooled atoms rather than a continuous beam of thermal atoms. At
the projected stability σy(τ) = 5 × 10−14τ−1/2, the projected accuracy of the
PARCS clock cannot be achieved without the ISS microgravity environment.

1.4 Concurrent Flight with Other Experiments

Concurrent flight with other clock experiments would provide opportunities
for useful comparisons among clocks of different structures. Stanford’s su-
perconducting microwave oscillator (SUMO) is scheduled to fly with PARCS.
Other possibilities include RACE, a rubidium atomic-clock experiment; ACES,

2
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Figure 1: Allan deviation of the PARCS cesium clock showing averaging times τ (in seconds)
needed to achieve various measurement uncertainties.

Europe’s Atomic Clock Ensemble in Space; the cooled-sapphire oscillators de-
veloped at JPL and the University of Western Australia; and the linear-ion
clock developed at JPL. In particular, concurrent flight of PARCS and SUMO
will allow a Kennedy-Thorndike experiment with a projected performance 770
times greater than previously achieved on earth. A slight improvement in the
Michelson-Morley experiment can also be achieved.

2 Experimental Objectives

Relativistic effects on clocks in low-altitude earth orbits can be characterized
by the orders of magnitude of the fractional frequency shift they cause. For
example, first-order Doppler shifts are of order v/c ≈ 10−5 for an orbiting
clock, where v is the spacecraft speed in a local, freely-falling, earth-centered
inertial frame and c is the defined speed of light. If Φ represents the Newtonian
gravitational potential at the location of the clock, then gravitational frequency
shifts and second-order Doppler shifts are of order Φ/c2 ≈ (v/c)2 ≈ 10−10.
The data analysis technique that is planned for PARCS is discussed in the
Appendix. It uses only even-order terms; fortunately fourth-order terms are
negligible. Fig. 1 shows the projected Allan Deviation of PARCS as a function
of averaging time τ . The absolute uncertainty is projected to be 5 × 10−17,
after about 12 days of averaging. We assume a time-transfer uncertainty (to the
earth) with a stability of 220 ps over at least 12 days. We assume the following
orbital parameters: altitude 400 km, inclination 51.6◦, and eccentricity 0.001.
Then one pass over a fixed ground station takes about 400 s. The orbital period

3
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is about 5500 s, and during 1 day the satellite will be in position to exchange
direct transmission with a single ground-based reference during four or five
passes. During a single pass, the time available for direct frequency comparison
with a ground-based reference clock is not sufficient to realize the full capability
of the PARCS clock. Frequency comparisons are instead expected to use GPS
satellites as intermediaries, which do not require such line-of-sight exchange.

2.1 Measurement of the Gravitational Frequency Shift

Here the space-borne clock’s frequency is compared with the frequency of a
clock on the earth employing a measurement of the accumulated phase of the
orbiting clock (see Appendix). Accumulated phase measurements make best
use of the long-term stability of the space-borne clock.

The ISS altitude is only about 400 km, so the second-order Doppler shift is
the dominant contribution to the net frequency shift. The fractional frequency
shift due to second-order Doppler (time dilation) is approximately 3 × 10−10,
while that due to gravitation is about 4×10−11. Significant contributions come
from the monopole potential of the earth, the quadrupole moment (≈ 3×10−14)
and a few higher moments. The Stokes coefficients are known sufficiently well
known[6] that uncertainties in a frequency-shift test, arising from uncertainties
in the Stokes coefficients, are negligible.

One pass is too brief to yield scientifically significant new results with di-
rect frequency comparison to an earth-bound standard. However, with the
accumulated-phase measurement method, the long-term stability of the clock
can be used to advantage, since many passes over the ground station, lasting
for days, are available for the measurement. Fig. 2 shows the results of a
covariance analysis for this experiment in which time transfer errors, clock sta-
bility, tracking errors, and inaccuracy of the ground clock used for comparison
have been accounted for. If the experiment lasts only a few hundred seconds,
the uncertainty in determining the fractional frequency shift is dominated by
the time-transfer uncertainties. Eventually these become small compared to
clock instabilities. At long times, the uncertainty of less than 2 parts per mil-
lion is dominated by the inaccuracy of the ground clock (frequency uncertainty
of 5 × 10−16). The level at which the corresponding test of GR was achieved
in Gravity Probe A was 70 parts per million,[1] so the proposed experiment
should result in improvement of measurement of the total gravitational fre-
quency shift by between one and two orders of magnitude. To obtain this
result, satellite position uncertainties of less than 50 cm must be achieved.

4
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Figure 2: The total measurement uncertainty as a function of averaging time τ (in seconds)
for the total frequency shift using the accumulated-phase measurement method. Beyond
about 105 seconds, the uncertainty in the measurement drops below a value of 2 ppm.

2.2 Second-Order Doppler Shift

Measurement of the second-order Doppler shift would test Local Lorentz In-
variance (LLI), at an uncertainty comparable to that of the best previous
test. In the Mansouri-Sexl test theory of special relativity,[7] the time dila-
tion terms are multiplied by a coefficient α, where it is currently known that
α = −1/2 ± (1 × 10−6), a result obtained using fast 20Ne atoms.[8] This ex-
periment will probe the effect in a different parameter range.

2.3 Test of Local Position Invariance (LPI)

LPI implies that two clocks of different structure but equal frequencies should
suffer identical frequency shifts when moved together through a gravitational
field. For such tests the longer-term stability of the clocks is relevant, rather
than accuracy. The same control of systematic effects that yields high accuracy
also leads to high stability. LPI can still be tested with stable, (but possibly
inaccurate) clocks by studying variations in frequency differences as the orbit
radius and orbital speed vary. A highly eccentric orbit is most desirable. If
LPI is violated, then for nearby clocks A and B ∆f/f = cAB∆Φ/c2, where ∆Φ
is the change in the gravitational potential of the clocks, δf = fA − fB , and
f = fA ≈ fB . In general relativity (GR) the coefficient cAB is exactly zero. A
recent experiment, lasting many months, made use of variations in the sun’s
potential arising from earth’s orbital eccentricity.[2] An upper limit cAB ≤

5
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2.1 × 10−5 was obtained, a significant improvement over the previous best[9].
For a clock on the ISS, one may expect a variation in earth’s gravitational
potential of ≈ δΦ/c2 ≈ 1.3 × 10−12. If the comparison between clocks can be
performed at the full stabilities of PARCS and SUMO, then the value of cAB

can be tested in 30 days at a level such that the error in cAB is

∆cAB < 9 × 10−6 . (1)

This is only a small improvement, but complements the earth-based experi-
ments by using clocks of markedly different internal structure. A larger orbital
eccentricity for the ISS would benefit this comparison even more.

2.4 Kennedy-Thorndike Experiment

For this experiment, the laser-cooled cesium clock is compared to a clock (such
as SUMO) with a resonance based on the length of the oscillator cavity. This
oscillator is analogous to an arm of an optical interferometer. As the spacecraft
turns, the oscillator cavity turns, and the frequency of the resonance could be
influenced by any spatial anisotropy in the speed of light. In contrast, the
cesium frequency is not expected to change since any cavity pulling associated
with changes in the microwave cavity of this clock is negligible. Comparison
of the cesium frequency with that of SUMO thus tests for spatial anisotropy.

Mansouri and Sexl’s [7] theory provides a basis for analysis of interferom-
eter experiments testing local Lorentz invariance. Stability, not accuracy, of
the laser-cooled clock for an orbital period is crucial in performing such tests.
Also, one can hope to reach a precision better than the absolute uncertainty of
the clock (5×10−17) because the signals have a characteristic signature due to
orbital motion that can be used to average down the noise over many orbits.

Assuming the existence of a preferred frame (e.g., one at rest with respect
to the cosmic microwave background radiation), in which the speed of light is
isotropic, then in a laboratory moving with velocity v relative to this frame,
the two-way speed of light propagating at angle θ from v is given by

c(θ)/c = 1 + (1/2 − β + δ)v2/c2 sin2 θ + (β − α − 1)v2/c2 , (2)

where α, β, and δ are parameters (to be studied experimentally) introduced
in the Mansouri and Sexl test theory. In special relativity the time dilation
parameter α = −1/2; the Lorentz contraction parameter β = 1/2; and δ =
0. (δ describes contraction normal to v.) The light speed c(θ) in Eq. (2)
determines the frequencies of a local cavity oscillator of fixed length L.

6
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The parameter (β−α−1) is measured in a Kennedy-Thorndike experiment.
The square of the clock’s velocity relative to the preferred frame should be

v2 = (vsun + vearth + vsat)
2 (3)

where the terms on the right side of Eq. (3) are respectively, the velocity of
the sun relative to the preferred frame (which could be taken to be 377 km/s
derived from the anisotropy of the cosmic background blackbody radiation),
plus the velocity of the earth relative to the sun, plus the velocity of the
satellite relative to earth. The coefficient of the last term in Eq. (2) can
be quite significant. One contribution to the fractional frequency shift of the
cavity oscillator is a cross term in the expansion of Eq. (3), giving rise to

∆f

f
= (β − α − 1)

2vsun · vsat

c2
. (4)

The time signature of such a term is highly correlated with that of the change
of potential which is of interest in testing LPI. There it is the change in the
earth’s (or the sun’s) gravitational potential that drives the effect. Here, it
is the orientation of vsat relative to vsun that drives the effect. These two
relativistic effects should be separable since they differ in phase.

Currently, the combination of parameters (β − α − 1) is only known ex-
perimentally to be < 6.6 × 10−5.[10] If an upper limit of 5 × 10−16 (assumed
stability of the cavity oscillator at 5500 s) can be put on the frequency change
of Eq. (4), and we assume that vsun ≈ 377 km/s, then a limit of order
(β − α − 1) < 9 × 10−10 results, an improvement by almost three orders of
magnitude. A limit on α provides independent confirmation of the special rel-
ativity predictions of time dilation. Smaller upper limits on the parameters α,
β, and δ will help in eliminating some preferred frame theories.

2.5 Michelson-Morley (MM) Experiment

In a MM type experiment, the θ-dependent term in Eq. (2) is measured. This
can be done using the slow rotation of the spacecraft in its orbit, which nat-
urally changes while the laser-cooled cesium clock provides frequency mem-
ory. The fractional frequency shift for a 90◦ rotation starting from θ0 is
(1/2 − β + δ)v2/c2 cos(2θ0). One cross-term in the expansion of v2 varies
with the orbital period. Placing an upper limit of 5 × 10−17 on such a term
would lead to (1/2−β +δ) < 1.5×10−9, slightly better than the previous best
result.[11] This experiment has the advantage of a much larger orbital velocity
than the velocity due to earth rotation in an earth-bound experiment.

7
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Table 1: Summary of science objectives for the PARCS mission

Measurement/Test
Expected

Uncertainty
Previous Best
Uncertainty

Improvement
(Ratio)

Net Frequency Shift, ∆f/f 1.7 × 10−6 70 × 10−6 35

Gravitational Frequency Shift, ∆f/f 12 × 10−6 140 × 10−6 12

Kennedy-Thorndike, β − α − 1 9 × 10−10 6.9 × 10−7 770

Local Position Invariance, cAB 9 × 10−6 2.1 × 10−5 2.3

Michelson-Morley, 1

2
− β + δ 5 × 10−10 5 × 10−9 10

Atom Drift Time, s 10 1 10

Most Accurate Space Clock, ∆f/f 5 × 10−17 1 × 10−12 20,000

Realization of the Second, ∆f/f 5 × 10−17 1.2 × 10−15 24

2.6 Realization of the Second

In an earth-based cesium clock, gravity simply pulls the atoms out of the
apparatus. The linewidth of the observed transition is then broader, limiting
the determination of the resonance center. Also, the atoms in an earth-based
clock must move at higher velocities relative to the clock enclosure where the
Doppler shift and several other velocity-dependent systematic shifts are larger
and more difficult to evaluate. In microgravity, atoms can be launched much
more slowly, increasing the observation time by an order of magnitude and
reducing the uncertainty in realization of the second by a comparable amount.

2.7 The TH − εµ Theory of Lightman and Lee

In the TH − εµ theory, charged massive particles in a spherically symmetric
gravitational field couple to “gravitationally modified” electromagnetic field
equations. To leading order, predictions of gravitational frequency shifts and
violations of LPI are expressed through two parameters Γ0 and Λ0.[12,13]
For example, when comparing the frequencies of a superconducting cavity-
stabilized clock and a Hydrogen maser moving together through a varying
gravitational potential, cAB = 3(Γ0 − Λ0)/2. For clocks at different locations,
∆f/f = (1− 3Γ0 + Λ0)∆Φ/c2. The PARCS measurements should give signifi-
cantly improved upper limits on these two linear combinations of parameters.

8
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Figure 3: Allan variance plot of the stability limits for PARCS. See the text for a description
of the different curves. The long-term limit of curve B is determined by the inaccuracy of
the ground clock.

2.8 Realization of the Second

In an earth-based cesium clock, gravity simply pulls the atoms out of the
apparatus. The linewidth of the observed transition is then broader, limiting
the determination of the resonance center. Also, the atoms in an earth-based
clock must move at higher velocities relative to the clock enclosure where the
Doppler shift and several other velocity-dependent systematic shifts are larger
and more difficult to evaluate. In microgravity, atoms can be launched much
more slowly, increasing the observation time by an order of magnitude and
reducing the uncertainty in realization of the second by a comparable amount.

It is difficult to transfer frequency between laboratories at the accuracy
of the best earth-bound standards, so real-time access to the highest accuracy
frequency references is limited. PARCS should outperform its earth-based
counterparts by an order of magnitude. The best current realization of the
second on earth has an uncertainty of 1.4×10−15 [3]. The projected uncertainty
for the proposed space clock is 5×10−17. Transfer of the second at this accuracy
assumes that GR is correct, in order to correct for clock frequency shifts. At
this level, uncertainties in our knowledge of the gravitational potential will
contribute a few parts in 1017 to the overall uncertainty; spacecraft position
and velocity will have to be known to 10 cm and 0.12 mm/s, respectively.

Fig. 3 shows stabilities of the critical components of PARCS. The projected
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clock stability is curve D. The straight curve A shows the frequency-transfer
limitation at short integration times, consistent with time transfer at an un-
certainty of 220 ps. (The unlabelled curve shows the effect of time transfer at
an uncertainty level of 100 ps.) Curve C shows the uncertainty in calculated
net frequency shift contributed by position uncertainty alone, from spacecraft
tracking at the 1 m level for position and 0.0013 mm/sec level for velocity. The
composite uncertainty is given by curve B, where the limit of 5× 10−16 is due
to estimated inaccuracy of the ground clock. The measurement objective for
∆f/f is achieved in 12 days. Curve D shows the full uncertainty of the space
clock being achieved at about 30 days.

2.9 Analyses of GPS Satellite Signals

The ISS is above the troposphere and most of the ionosphere, so the PARCS
mission affords the opportunity of viewing GPS satellite signals from a different
vantage point. Observations will be limited primarily by the high speed of the
ISS and multipath effects associated with signal reflections off ISS structures.
Analyses of GPS signals could add to our understanding of the system. When
more than four GPS satellites are observed from a receiver with a very stable
time base, the navigation equations are highly constrained; this can be turned
around to study a particular satellite. Issues of possible interest in GPS include
temperature and attitude dependencies of transmitter phase centers.

3 SUMMARY–SCIENCE OBJECTIVES

Table 1 summarizes the scientific objectives for PARCS . These involve the
SUMO oscillator that can support a clock stability of 5× 10−14τ−1/2 and can
be used for the on-board, two-clock (LPI) experiments. These results could be
enhanced by the concurrent flight of one or more of the clocks being developed
elsewhere. If PARCS flies concurrently with SUMO as currently planned,
bo the Kennedy-Thorndike (improvement factor 770) and Michelson-Morley
experiments (improvement factor 10) can be performed. The objectives and
the science requirements for the proposed flight have been dictated primarily
by the time-transfer stability considerations shown in Fig. 3.

Appendix

Transformation of second-order Doppler shift
of a space-borne atomic clock

This Appendix describes an alternative treatment of the second-order Doppler
shift contribution to orbiting clock frequency shift. Over long integration times,
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systematic errors in the determination of orbiting clock velocity are a major
source of uncertainties in comparing proper time predictions with observation.
Such errors can be greatly reduced by transforming this frequency shift con-
tribution into an alternative form appropriate for a satellite in nearly free fall,
in which the terms can be evaluated with less uncertainty. This approach has
been adopted as the principal method of data analysis for PARCS. Accumu-
lated phase involves integration of the second-order Doppler shift contribution
over coordinate time. Velocity is a coordinate time derivative, so this term
may be evaluated by integration by parts. The metric of GR, valid to order
c−2 in the neighborhood of the earth is:[14]

ds2 = gµνdxµdxν =

[

1 + αG
2(Φ − Φ0)

c2

]

(cdt)2−αD

[

1 +
2Φ

c2

]

(dx2+dy2+dz2)

(5)
where dt is the increment of coordinate time, Φ is the Newtonian gravitational
potential, and we have inserted coefficients αG and αD (which are exactly
equal to unity in GR) to identify the sources of various contributions. Φ0

is the effective gravitational potential on the earth’s rotating geoid. For an
orbiting clock in free fall, the equations of motion are

d2xα

ds2
+ Γα

µν

dxµ

ds

dxν

ds
=

[

d2xα

ds2

]

NG

. (6)

where Γα
µν is the Christoffel symbol of the second kind. The subscript “NG”

means the non-gravitational part of the acceleration. If the orbiting satellite is
in free fall the right-hand side of the above equation is zero. These equations
reduce approximately, in the Newtonian or classical limit, to

αD
dv

dt
+ αG∇Φ =

dv

dt

∣

∣

∣

∣

NG

. (7)

This shows that the gravitational part of acceleration is related to the gradient
of the potential through the coefficient ratio αG/αD.

Let τB and τB be proper times elapsed on the orbiting clock and the
earth-fixed reference clock, respectively, between coordinate times t1 and t2.
The fractional time difference observable is

∆τ

τ
=

τB − τA

τA
=

αG

τA

∫ t2

t1

dt

[

ΦB − ΦA

c2

]

−
αD

τA

∫ t2

t1

dt

[

v2

B − v2

A

2c2

]

. (8)

The largest contribution to measurement uncertainty of this observable comes
from the second-order Doppler shift term

∫

v2

Bdt. Transforming this term by
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integration by parts, using Eq. (7), gives

τB−τA

τA
= αG

τA

∫ t2
t1

dt
[

ΦB−
1

2
rB ·∇ΦB−ΦA

c2

]

+ αD

τA

∫ t2
t1

dt
[

v2

A

2c2

]

−
αD

2c2τA
rB · vB

∣

∣

t2

t1
+ αD

2c2τA

∫ t2
t1

dt [rB · aB ]

∣

∣

∣

∣

NG

.
(9)

Mathematically, this transformation is exact. The boundary terms involve
the dot products of the position and velocity evaluated at times t1 and t2.
These contributions can be made small. The dot product r·v is proportional to
the orbital eccentricity and for the planned space station orbit the eccentricity
will be in the neighborhood of 0.001. Also, it is possible to select starting and
ending points for the experiment for which either the dot product vanishes,
such as at apogee, or for which the upper boundary term cancels the lower
boundary term. Finally, the boundary term is divided by τA and decreases
with integration time. For long integration times, this term does not contribute
significantly to uncertainties in the prediction of the observable. For integration
times as short as one orbital period, if velocity can be measured to better than
1 mm/s and position to better than 1 m, the contribution to the fractional
error from one such boundary term is less than 5 × 10−17.

Second, the non-gravitational acceleration aboard the ISS is projected to
be less than about 3 × 10−6 g or 3 × 10−5 m/s2. The contribution of the
uncertainty in this term to the net fractional uncertainty can be reduced to
negligible levels by monitoring the non-gravitational acceleration to an accu-
racy of 400×10−9 g. This is well within the expected capabilities of the MAMS
(Microgravity Acceleration Measurement System) accelerometers, which is al-
ready operating on the ISS. A third contribution is proportional to the time
integral of rB · ∇ΦB . Here it is position errors rather than velocity errors that
give rise to uncertainties. This term involves the gravitational coefficient αG

and demonstrates that testing the total accumulated phase shift tests the term
proportional to αG in the metric, which is responsible for the gravitational part
of the frequency shift.

Thus errors in predicting the accumulated phase arise from clock instabil-
ities, inaccuracy of the ground clock, time transfer (errors in t1 and t2), errors
in position and velocity determination of B and A. A similar transformation of
the second-order Doppler term

∫

dtv2

A/(2c2) is not necessary. Fig. 3 illustrates
application of the integration-by-parts method.
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Improving the Accuracy of Lunar Laser Ranging Tests of Gravitational
Theory: Modeling and Future Directions

James G. Williams, Slava Turyshev, and Jean O. Dickey
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CA 91109
 

                                                                                                April 16, 2003 
 
                                    Accurate analysis of precision ranges to the Moon have provided several tests of

gravitational theory: the equivalence principle, geodetic precession, PPN parameters β
and γ, and the constancy of the gravitational constant G.  Other possible tests include the
inverse square law at 20,000 km length scales and the PPN parameter α1.  The
uncertainties of these tests have decreased as data accuracies have improved and data
time span has lengthened.  We are exploring the modeling improvements necessary to
proceed from cm to mm range accuracies.  Looking to future exploration, what
characteristics are desired for the next generation of ranging devices, what fundamental
questions can be investigated, and what are the challenges for modeling and data
analysis?
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Abstract

If there is an interaction in physical law which differentially accelerates the test bodies in a STEP
satellite, then the different elements that compose the Earth will most likely have source strengths for
this interaction which are not proportional to their mass densities. The rotational flattening of Earth and
geographical irregularities of our planet’s crust then produces a multipole structure for the Equivalence
Principle violating force field which differs from the multipole structure of Earth’s ordinary gravity field.
Measuring these differences yields key information about the new interaction in physical law which is not
attainable by solely measuring differences of test body accelerations.

Introduction

The purpose of a Space Test of the Equivalence Principle (STEP) is to measure with extremely high precision
any differences between the acceleration of different materials (elements of the periodic table). Any difference
will most likely be the result of a previously undetected, long range force field in physical law, which acting
between objects leads to an interaction energy between each pair of source elements of the form

V (�rij) = − G MiMj

Rij
± KiKj

Rij
exp(−µRij)

with the new interaction’s coupling strengths Ki being different than bodies’ mass-energies; and µ being a
possible Yukawa inverse range parameter related to the mass of the boson field particle responsible for the
new interaction. If the new field is massless then its spatial dependence is inverse square just as Newtonian
gravity. Letting κe(�r) be the source density in Earth pertinent to this new interaction, then two experimental
test bodies would fall toward Earth with rate differences given by

|�ai − �aj |
�ge

=
(

K1

M1
− K2

M2

)
1

GMe

�∇
∫

κe(�r′)
|�r − �r′| d3r′

1
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Normally a STEP experiment views its role as just measuring the different Ki/Mi ratios of different materials.
This note highlights some interesting further possibilities for the experiment which depend on details of the
source integral in this fundamental equation. A generalization of Newton’s law of action and reaction usually
manifests itself in field theory based interactions, particularly at the static limit. So if objects respond to
a force field with coupling strength different than their masses, then objects generally are sources for this
force field with strengths different than their masses. So a non-spherically symmetric Earth (in shape and
composition) can have novel features in its Equivalence Principle violating (EPV) force field [1].

The Earth’s ordinary Newtonian gravitational potential and (EPV) potential can both be expanded in
spherical harmonics which reflect the deviations from perfect spherical symmetry of the Earth

U(�r) = G

∫
ρ(�r′)
|�r − �r′| d3r′ =

GM

r

(
1 +

∞∑
l=2

m=l∑
m=−l

(re

r

)l

Jlm Ylm(θ, φ)

)
(1)

K(�r) =
∫

κe(�r′)
|�r − �r′| d3r′ =

K

r

(
1 +

�d · r̂
r

+
∞∑

l=2

l∑
m=−l

(re

r

)l

Klm Ylm(θ, φ)

)
(2)

Three things should be observed about the expansion for the EPV potential: 1) Since the center of mass-
energy has been chosen as origin of the coordinate frame, the mass dipole term vanishes in expansion for
U(�r), but generally there will be a dipole term in the potential K(�r); 2) because of the rotational flattening of
Earth there will be substantial quadrupole moments J20 and K20 for the two potentials. Because the Earth’s
core material and mantel material may havea different ratio of source strength densities for generating the
EPV interaction than their mass density ratio, K20 will differ from the well-measured J20 moment of the
Earth; 3) while Earth’s mulitipoles other than J20 are very small in spite of irregular distributions of high
mountains, plains, and deep ocean basins, probably due to the approximate isostacy of the Earth’s crust,
this isostacy will not so suppress the multipoles in the EPV potential.

Quadrupole Moments

One third the mass of Earth is in its iron-dominated core while the remaining mantle and crustal materials
of Earth are composed of relatively low-Z elements. Because the Earth is rotatonally flattened as shown in
Figure (1), the matter distributions will produce significant quadrupole moment parameters J20 and K20.
And because these quadrupole moment integrals for a body weight each differential of matter by the square
of distance from the center, the mantle material of Earth contributes more strongly to these moments than
their fractional mass fraction. If these two parts of Earth have different ratios in their strengths for producing
ordinary gravity and the EPV force field, then the difference between the two quadrupole moment parameters
can be estimated to be

1 − K20

J20

∼= κcore/ρcore − κm/ρm

κcore/ρcore + (Mm/Mcore) κm/ρm

(
Im − f (Mm/Mcore) Icore

Im + f Icore

)

∼= κcore/ρcore − κm/ρm

κcore/ρcore + 2κm/ρm

with f being the ratio of the core’s flattening ratio to that of the mantle. A measurement of K20 is seen to
involve the sum of κ/ρ ratios as well as the difference. No number of STEP measurements of only differences
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Figure 1: The rotationally flattened Earth is shown with its two main material components — core and
mantle/crust. When these two components of Earth have different ratios in the source density strengths for
ordinary gravity and the EPV force field, κm/ρm �= κc/ρc, the quadrupole parameter K20 will differ from
gravity’s J20.
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in the K/M ratios will yield information on the total strength of the new interaction, so this is vital, new
information.

EPV Dipole Moment

The Earth’s crust is rather irregular in its composition and thickness, being just a few kilometers thick
beneath deep ocean basins and tens of kilometers thick beneath high mountains and plateaus — and it is
dynamic, albeit on long geologic time scales, as it tends to reach isostatic equilibrium in which the total
weight of the crustal material displaces equal weight of heavier mantle material. The crust approximately
floats. This explains the small size of the Earth’s gravitational mulitpoles; about just the same amount
of mantle mass is displaced at any location as there is crustal mass there. But if the crustal material has
ratio of strengths κcr/ρcr which differs from that of the displaced mantle material, then the dipole moment
parameter that appears in the potential expansion, Equation () [2], will be given by

�d ∼= r3
e

K

∫ (
κcr − ρcr

κm

ρm

)
h(θ, φ) r̂ dΩ ∼= 3

κcr − ρcrκm/ρm

κm(1 − ξ) + ξκc

∫
h(θ, φ) r̂ dΩ/4π

with h(θ, φ) being the location-dependent thickness of the crust (plus ocean), r̂ being unit vector to surface
location, dΩ being solid angle differential, and ξ being volume fraction of the Earth’s core. If only these dipole
and quadrupole modifications of the EPV force field are then considered, the field that drives differential
accelerations of test bodies on the STEP spacecraft will have the form

�a = −K

r2

(
r̂ −

�d − 3�d · r̂ r̂

r
+

3
2
K20

r2
e

r2

(
(1 − 5 cos2 θ) r̂ + 2 cos θ ẑ

))

with the dipole vector �d(t) being fixed with the rotating Earth and therefore presenting a time-dependence in
its equatorial plane components. Measurement of the global EPV parameters, �d and K20 will be facilitated
because the signals they produce in differentially accelerating the test bodies in the STEP satellite will
generally have different frequencies than the dominant monopolar EPV signal proportional to K.

The Low Altitude STEP Signal Approximation

In order to maximize the strength of the EPV signal originating from Earth’s matter, the orbit of a STEP
satellite will be as close to Earth as drag considerations permit. So it is appropriate to formulate a low
altitude expression for the EPV signal. As illustrated in Figure 2, a satellite is considered which has altitude
ρ << r above the Earth’s surface. A coordinate system is chosen whose pole, x = 1−cos θ = 0, is beneath the
instantaneous position of the satellite. Over the entire surface of the Earth there is an inhomogeneous source
of the EPV signal proportional to the thickness of the crust, h(x, φ), and the differences between the crustal
materials’ EPV source strength and that of the displaced denser mantle material, σ(x, φ) = κcr −κmρcr/ρm.
The vertical and horizontal components of the EPV signal at the satellite can then be expressed as integrals
over the Earth’s surface.

δkv =
∫ 2

0

r2 (ρ + rx)

(2r (r + ρ)x + ρ2)3/2
dx

∫ 2π

0

σ(x, φ) dφ
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σ(x, φ) = h(x, φ) [κcr(x, φ) − ρcr(x, φ) κm/ρm]
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Figure 2: For a low altitude STEP satellite, the vertical component of the EPV signal is found to be in part
proportional to the source strength of the new EPV interaction directly below the satellite. There is also,
in general, a global contribution from the entire surface of the Earth, and there is a horizontal component
of the EPV signal which is also determined by aglobal integral.
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δ�kh =
∫ 2

0

r3
√

2x − x2

(2r (r + ρ) x + ρ2)3/2
dx

∫ 2π

0

σ(x, φ) û(φ) dφ

which in the limit of a low altitude satellite take the form

δkv = 2π σ(0) +
∫ 2

0

1√
8x

dx

∫ 2π

0

σ(x, φ) dφ

δ�kh =
∫ 2

0

√
1 − x/2
2x

dx

∫ 2π

0

σ(x, φ) û(φ) dφ

with σ(0) is the EPV source strength directly beneath the spacecraft. All components of the EPV signal,
however, also receive contributions from global integrals over the entire Earth surface. As the STEP satellite
tracks over the entire Earth’s surface in the course of its entire mission and many hundreds of orbits, a
robust EPV should map out the geographic distribution of the Earth surface’s source strength for this new
interaction.

This work supported by N.A.S.A. contract NAG3-2911
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General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of
Moving Bodies

Sergei Kopeikin
University of Missouri-Columbia

The general relativistic theory of the gravitational VLBI experiment conducted on
September 8, 2002 by Fomalont and Kopeikin is explained.  Equations of radio waves
(light) propagating from the quasar to the observer are integrated in the time-dependent
gravitational field of the solar system by making use of either retarded or advanced
solutions of the Einstein field equations. This mathematical technique separates explicitly
the effects associated with the propagation of gravity from those associated with light in
the integral expression for the relativistic VLBI time delay of light.  We prove that the
relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1,
2001), changes sign if one retains direction of the light propagation but replaces the
retarded for the advanced solution of the Einstein equations.  Hence, this correction is
associated with the propagation of gravity.  The VLBI observation measured its speed,
and that the retarded solution is the correct one.
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Experimental investigations of the electromagnetic vacuum:
Can we weigh the vacuum?
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ISLES: Probing Extra Dimensions Using  
a Superconducting Accelerometer 

 
Ho Jung Paik, M. Vol Moody, and Violeta A. Prieto-Gortcheva 

Department of Physics, University of Maryland, College Park, MD 20742 
  

In string theories, extra dimensions must be compactified.  The possibility that gravity 
can have large radii of compactification leads to a violation of the inverse square law at 
submillimeter distances.  The objective of ISLES is to perform a null test of Newton’s 
law in space with a resolution of one part in 105 or better at 100 µm.  The experiment will 
be cooled to ≤ 2 K, which permits superconducting magnetic levitation of the test masses.  
To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large 
diameter-to-thickness ratio.  Two test masses, also disk-shaped, are suspended on the two 
sides of the source mass at a nominal distance of 100 µm.  The signal is detected by a su-
perconducting differential accelerometer.  A ground test apparatus is under construction. 

 
1. Objective of ISLES 

The Newtonian inverse-square (1/r2) law is a cornerstone of General Relativity.  Its validity 
has been demonstrated to one part in 108 at 107 ~ 109 km and to one part in 103 ~ 104 at 1 cm ~ 
10 km (Adelberger et al., 1991).  The interest in testing Newton’s law, at the shortest range pos-
sible, has been renewed by a recent suggestion that the 1/r2 law may be violated below 1 mm as a 
manifestation of extra dimensions in spacetime (Arkani-Hamed et al., 1999).  The objective of 
ISLES (Inverse-Square Law Experiment in Space) is to perform a null test of Newton’s law in 
space with a resolution of one part in 105 or better at ranges between 100 µm to 1 mm. 

Figure 1 shows the existing limits for the 1/r2 law at ranges below 1 mm (Hoyle et al., 2001; 
Long et al., 2003) and the anticipated sensitivities of ISLES on board the ISS, plus expected sen-
sitivities for its free-flyer and ground versions,  plotted as functions of the range λ.   The ex-
pected resolution of ISLES (at 2σ) on the ISS is |α | =  2 × 10−5 at λ = 100 µm and |α | =  2 × 10−2 
at λ = 10 µm, where the total po-
tential is written as 

103 5 -5 10-4 10-32 5 2 5
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Figure 1.  Sensitivity of ISLES versus the existing limit. 
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This resolution represents an im-
provement over the existing limit 
at λ = 100 µm by six orders of 
magnitude.  The improvement at 
shorter ranges is even greater.  
The free-flyer version improves 
the resolution by another two or-
ders of magnitude.  ISLES is also 
capable of detecting the axion, a 
candidate dark-matter particle 
and will probe the extra dimen-
sions down to a few µm.   
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2. Scientific Value of Short-Range 1/r2 Law Test 
Search for extra dimensions.  String theories can be consistently formulated only in nine 

spatial dimensions.  Because the space we observe is three-dimensional, the extra dimensions 
must be hidden.  It is possible to have dimensions that affect gravity but not elementary particles, 
if elementary particles are localized on a three-dimensional subspace (“brane”) embedded in a 
higher-dimensional space.   

String theory is defined in terms of a fundamental scale M*.  If there are n compact dimen-
sions with radii R1, R2, … Rn, Gauss’s law implies that the Planck mass MPl is related to M* by 

   (2) ....21
2
*

2
n

n
Pl RRRMM +≈

As we probe distances shorter than one of the radii Ri, a new dimension opens up and changes 
the r dependence of the gravitational force law.   

Cosmological and astrophysical constraints give a bound M* > 100 TeV (Cullen and Perel-
stein, 1999; Hall and Smith, 1999), with the most stringent bound, M* > 1700 TeV, coming from 
the evolution of neutron stars (Hannestad and Raffelt, 2002).  For two large extra dimensions of 
the same magnitude, this most stringent bound corresponds to R1 ≈ R2 ≤ 40 nm.  While this is be-
yond the reach of our experiment, there are untested cosmological assumptions going into these 
bounds.  Another interesting scenario is the case of two or more large extra dimensions with R1 
>> R2, …, Rn.  Since Eq. (2) depends only on the product, we can have M* ≥ 100 TeV while still 
having R1 near the experimental limit.   

Thus new developments in string theories raise the possibility that there may be deviations 
from Newton’s law between micron and millimeter length scales.  These developments represent 
the first prediction of a string theory that can be tested, and a discovery of such a deviation from 
the 1/r2 law would be ground breaking.  A null result would also be significant in that, in addition 
to extending the limits of the 1/r2 law and General Relativity, it will put constraints on the string 
scale and on the sizes of any possible extra dimension. 

Search for the axion.  In strong interactions, non-perturbative effects induce violations of 
parity (P) and charge conjugation-parity (CP) symmetries, parameterized by a dimensionless an-
gle θ.  The a priori expectation for the magnitude of θ is of the order of unity, but no such viola-
tions of P or CP have been observed in strong interactions.  In particular, present upper bounds 
on the neutron electric dipole moment (Altarev et al., 1992) require θ ≤ 3 × 10–10.   

Peccei and Quinn (1977) developed an attractive resolution of this strong CP problem.  One 
ramification of their theory is the existence of a new light-mass boson, the axion (Weinberg, 
1978; Wilczek, 1978).  The axion mediates a short-range mass-mass interaction.  The upper 
bound θ ≤ 3 × 10–10 corresponds to a violation of the 1/r2 law at the level of |α |  ≈ 10–3 at λ = 200 
µm, which is well within the reach of our experiment.  

The axion could also solve the major open question in astrophysics: the composition of dark 
matter.  Although neutrino mass, MACHOs (MAssive Compact Halo Objects), and many hypo-
thetical particles have been offered as explanations, the solution remains elusive.  The axion is 
one of the strongest candidates for the cold dark matter (Turner, 1990).  Confirmation (or rejec-
tion) of this prediction would therefore have a major impact in our understanding of the universe, 
from its most microscopic constituents to its grand scale. 
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3. Principle of Experiment  
Newtonian null source.  To maximize the masses that 

can be brought to within 100 µm from each other, flat disk 
geometry is used for both the source and test masses.  An in-
finite plane slab is a Newtonian null source.  We approximate 
this null source of Newtonian gravity by using a circular disk 
of a sufficiently large diameter-to-thickness ratio.  Figure 2 
shows the configuration of the source and test masses with 
associated coils and capacitor plates.  

Levitated test masses.  Two disk-shaped superconduct-
ing test masses are suspended on the two sides of the source 
mass and are coupled magnetically to form a differential ac-
celerometer.  The average position of the test masses with re-
spect to the housing are measured with capitors C1 and C2, 
while the motions induced in the levitated test masses are de-
tected by sensing coils (LS1 and LS2). 

In Earth’s gravity (1 g), it is difficult to suspend two flat 
disks on two sides of the source mass at such proximity 
without significantly modifying the geometry and stiffening 
the differential mode, thus degrading the resolution of the 
experiment.  In micro-gravity, each test mass can be sus-
pended by applying only minute forces from a pancake coil 
(LS1 or LS2) and a small ring coil (LR1 or LR2) coupled to a narrow slanted rim of the test mass. 

CE

 
Figure 2.  Configuration of the 
source and test masses. 
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Second harmonic detection.  As the source mass is driven at frequency fS along the symme-
try axis, the first-order Newtonian fields arising from the finite diameter of the source mass are 
canceled upon differential measurement, leaving only a second-order error at 2fS.  By symmetry, 
the Yukawa signal of Eq. (1) also appears at 2fS.  The second harmonic detection, combined with 
the common-mode rejection ratio (CMRR) of the detector, reduces source-detector vibration 
coupling by over 300 dB. 

Expected signal.  The design allows a 
source displacement of up to ±50 µm.  The 
differential acceleration signals expected 
from the Newtonian force errors (with 90% 
correction) and from the Yukawa forces 
with |α |  = 10−5 and λ = 100 µm are plotted 
in Figure 3 as a function of the source mass 
position.  The rms amplitude of the Yukawa 
signal, corresponding to a ±50- µ m dis-
placement, is 8.5 × 10−12 α m s-2.  The rms 
amplitude of the Newtonian term, arising 
from the finite diameter of the source mass, 
is 1.0 × 10−16 m s-2 before compensation.  
The Newtonian error will be computed and 
removed to ≤ 10%, which is trivial.   
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Figure 3.  Newtonian (compensated) and Yukawa 
signals versus source mass position. 
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4. Experimental Hardware 
Overview of the apparatus.  Figure 4 

shows a cross-sectional view of the apparatus 
for the ISS experiment.  The entire housing is 
fabricated from niobium (Nb).  The source 
mass is suspended by cantilever springs at the 
edge and driven magnetically.  A thin Nb 
shield provides electrostatic and magnetic 
shielding between the source and each test 
mass.  The test masses are suspended and 
aligned by magnetic fields from various coils.  
Two auxiliary superconducting accelerome-
ters are mounted on two sides of the housing 
to provide linear and angular acceleration 
signals as well as a gravity gradient signal. 

The entire assembly weighs 6.0 kg and 
fits within the 20-cm diameter envelope of the 
LTMPF instrument well.  The apparatus is 
fastened to the second-stage thermal platform 
of the Cryo Insert, where the temperature will 
be stabilized to ≤5 µK.  The detector orienta-
tion is chosen so that its sensitive axis is 
aligned with the pitch (y) axis of the ISS.  
This orientation minimizes the centrifugal ac-
celeration noise acting on the test masses. 
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Driving
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Figure 4.  Cross section of the ISLES apparatus. 
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Source and test masses.  The source mass is a disk 2.0 mm thick by 140 mm in diameter, 
with mass M = 510 g.  The source mass, cantilever springs, and rim are machined out of a single 
plate of Ta.  Ta is chosen for its high density (16.6 g cm−3) and its relatively high Hc.  Each test 
mass is a Nb disk 0.25 mm thick by 63 mm in diameter, with a rim 0.25 mm thick by 2.0 mm 
wide, which has 5° slant from the axis.  The mass of each test mass is m = 7.5 g.   

Superconducting circuitry.  Schematics of the superconducting circuits for the detector are 
shown in Figure 5.  These circuits are similar to the standard differencing circuit used at the Uni-
versity of Maryland in the superconducting gravity gradiometer (SGG) (Moody et al., 2002).  
The test masses are suspended radially by storing persistent currents IR1 and IR2 in ring coils LR1 
and LR2, as shown in Figure 5(a).  Due to the slanted rim of the test masses, currents IR1 and IR2 
will also exert an axially outward force on the test masses.  This outward force is balanced by the 
axially inward forces provided by the currents in the sensing, alignment, and feedback coils.   

The scale factors of the component accelerometers are matched by adjusting currents IS1 and 
IS2 in pancake coils LS1 and LS2, shown in Figure 5(b).  The SQUID measures the differential ac-
celeration aD, or gravity gradient, along the y-axis.  To align an individual test mass parallel to its 
shield as well as the other test mass, two alignment circuits are provided for each test mass, one 
per degree of freedom.  Figure 5(c) shows the alignment circuit of test mass 1 about the x-axis.  
To suppress the nonlinearity of the scale factors, a feedback is applied to the test masses, which 
actively stiffens the modes.  The common-mode (CM) and differential-mode (DM) outputs iFC 
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and iFD are fed back to 
the test masses, as 
shown in Figure 5(d).  
The CM output is de-
rived from the auxiliary 
accelerometers.   

Coarse and fine 
heat-switches.  To be 
able to control the mag-
netic fluxes trapped in 
various superconduct-
ing loops with suffi-
cient precision in the 
noisy environment of 
the ISS, two sets of 
heat-switches are pro-
vided: coarse heat-
switches, Hij’s, with an 
L/R time constant of ~ 
10 ms, and fine heat-
switches, hij’s, with a 
time constant of ~ 100 
s.  With 1-ms time 

resolution, fluxes can then be adjusted in the aligning, supension, and readout coils to one part in 
105.  This gives the ability to match the scale factors to 10−5 and to align the sensitive axes to 
10−5 rad, resulting in an initial CMRR of 105 in all three linear degrees of freedom. 
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Figure 5.  Superconducting circuits for the detector. 

Auxiliary superconducting accelerometers.  Figure 4 shows two three-axis auxiliary su-
perconducting accelerometers mounted symmetrically on the two sides of the instrument hous-
ing.  Each test mass is a hollow 20-g Nb cube, suspended and sensed by Nb pancake coils on its 
six faces.  The accelerometers are coupled to SQUIDs to measure three linear (ai) and two angu-
lar (αi) acceleration components, plus a gravity gradient component (Γij).  The unmeasured com-
ponent αy is not needed for error compensation.  

Error compensation.  Linear and angular accelerations are rejected to 10−5 and 10−4 m, re-
spectively, by adjusting persistent currents in the sensing and alignment circuits.  To improve the 
rejection further, we apply error compensation techniques that have been demonstrated with our 
SGG (Moody et al., 2002).  During the experiment, the linear and angular accelerations of the 
platform, measured by the auxiliary accelerometers, are multiplied by the predetermined error 
coefficients (transfer functions) and are subtracted from the detector output.  By applying the 
compensation factor 103 to the noise levels, demonstrated in the laboratory, the linear and the an-
gular acceleration rejections are improved to 108 and 10−7 m, respectively. 

Due to the short but finite baseline (l ≈ 2.5 mm), the 1/r2 law detector is a gravity gradiom-
eter that is sensitive to attitude modulation of Earth’s gravity gradient, to acceleration noise from 
ISS, and to centrifugal accelerations.  The auxiliary gradiometer measures exactly the same gra-
dient noise, except for gravity disturbances from nearby objects (< 1 m).  This noise can thus be 
removed from the detector output by applying the same correlation method.   
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5. Error Budget 
Metrology errors.  The effects from the finite diameter of the source and the dynamic mass 

of the suspension springs are corrected to 10% and 20%, respectively.  Linear taper and linear 
density variation of the source produce second order errors, which become negligible.  The test 
masses tend to rotate slowly about the sensitive axis, averaging out the asymmetry about the 
axis.  Hence only the radial taper and the radial density variation are important.  Due to the null 
nature of the source, test mass metrology is not important, except for the extended rim.  The rim 
dimension is fabricated to 2.5 µm tolerance.  The total metrology error is 1.5 × 10−17 m s-2.   

Intrinsic instrument noise.  The intrinsic power spectral density of a superconducting dif-
ferential accelerometer is given (Chan and Paik, 1987; Moody et al., 2002) by 
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where m is the mass of each test mass, ωD  = 2πfD  and QD  are the differential-mode resonance 
frequency and quality factor for the test mass motions, β is the electromechanical energy cou-
pling coefficient from the test mass motions to the electrical circuits, η is the electrical energy 
coupling coefficient of the SQUID, and EA( f ) is the input energy resolution of the SQUID.   

Equation (3) shows that fD  is a critical parameter for the intrinsic noise.  The microgravity 
environment on ISS, in principle, allows a suspension 106 times softer than on the ground, which 
corresponds to fD  < 0.01 Hz.  On the other hand, the test mass displacement in response to the 
ISS vibration must be minimized to reduce errors due to electric charge, patch-effect fields, self-
gravity of the ISS, and most importantly the nonlinearity of the scale factors.  Further, the test 
mass suspension must be stiff enough to keep the test masses from bumping into the housing be-
fore the feedback loop is closed.  This requirement leads to fC ≥ 0.2 Hz.  Ideally, one would in-
crease fC as much as possible, while keeping fD low.  Unfortunately, the nonlinearity of the coils 
couples a fraction of the CM stiffness to DM, providing a practical limit: fC/fD ≤ 4.  Therefore, fC 
≥ 0.2 Hz implies fD ≥ 0.05 Hz.   

Substituting fD = 0.05 Hz, T = 2 K, m = 7.5 g, QD = 106, β = η = 0.5, and typical SQUID 
noise EA( f ) = 10–30 (1 + 0.1 Hz/f ) J Hz-1, we find the intrinsic noise of the instrument to be 
Sa

1/2( f ) = 7.0 × 10–14 m s–2 Hz–1/2 at f = 0.02 Hz. 

Acceleration Noise.  The y-axis acceleration measured by a SAMS II accelerometer in the 
US Lab on a typical day corresponds to 3 × 10–6 m s–2 Hz–1/2 at 0.02 Hz.  Assuming that the 
ISLES detector experiences the same acceleration at its position on the ISS, this noise is reduced 
to 3 × 10–14 m s–2 Hz–1/2 by the net CMRR of 108.  The angular acceleration noise is reduced to 2 
× 10–14 m s–2 Hz–1/2 by the net error coefficient of 10−7 m.  The centrifugal acceleration noise is 
negligible.  The nonlinearity noise will be reduced to < 10–14 m s–2 Hz–1/2 under a feedback con-
trol, which stiffens CM to 10 Hz.  The total acceleration noise then becomes 6.3 × 10–14 m s–2 
Hz–1/2 at f = 0.02 Hz. 

Gravity noise.  Helium tide is absent due to the Earth-fixed orientation of the ISS.  Helium 
sloshing is of minor concern since it is expected to occur at a sufficiently low frequency, ~ 2.5 
mHz.  The gravity noise from modulation of the Earth’s gravity gradient and from ISS self-
gravity, including the activities of astronauts, along with the centrifugal acceleration, will be 
taken out by the error compensation scheme described above.   
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Magnetic crosstalk.  Trapped flux is not of concern as long as the flux is strongly pinned.  
Flux creep will be minimized by cooling and performing the experiment in a low magnetic field.  
For this purpose, LTMPF is equipped with a Cryoperm magnetic shield.   

With the high magnetic field required to drive the source mass, magnetic crosstalk between 
the source and the detector is a very important potential source of error.  To solve this problem, 
the entire detector housing is machined out of Nb and a thin Nb shield is provided between the 
source and each test mass.  High-purity Nb will be used.  The Nb will be heat-treated to bring the 
material very close to a type-I superconductor, thus minimizing flux penetration.  The supercon-
ducting shield is expected to provide over 200-dB isolation (Rigby et al., 1990).  This shielding, 
combined with 60-dB rejection from the second harmonic detection, should provide the required 
isolation between the source drive signal and the test masses in excess of 260 dB. 

Electric charge effects.  Levitated test masses in orbit will accumulate electric charge from 
cosmic rays and from high-energy protons as the spacecraft traverses through the South Atlantic 
Anomaly.  Scaling from the charge computed for STEP test masses (Blaser et al., 1996) and cor-
recting for differences in test mass shapes, we find the total charge accumulated in each test mass 
over the duration of the experiment to be Q ≈ 1.5 × 10–13 C.   

The charge trapped in the test mass will induce image charges on the neighboring coils and 
superconducting ground planes.  These charges will generate a differential force Q2/ε0A, where 
ε0 is the permittivity of vacuum and A is the area of the test mass.  The force results in the maxi-
mum differential displacement at the end of the mission:  
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                        (4) 

This displacement affects the CMRR through mismatches in the accelerometers.  With the initial 
coil gap of 10–4 m and a mismatch of 10%, we find that the CMRR is affected by only 7 ppm.  
This charging-induced error should allow the passive CMRR to remain at the required level of 
105 throughout the mission.  So it appears that ISLES does not require a discharging system.  We 
are planning to carry out a more refined analysis of trapped charge for ISLES.   

The energetic charged particles will also impart momentum and cause heating of the test 
masses.  For the STEP study, these effects were found to be less important than the electrostatic 
force.  In addition, the patch-effect potential will be modulated as charge builds up in the test 
masses, causing a time-varying acceleration.  These ac disturbances occur mostly outside the 
signal band and therefore are averaged out.  The Casimir force is not of concern for the present 
experiment where the gap between the masses is ≥ 10 µm (Lamoreaux, 1997).  

Temperature noise.  The modulation of the penetration depth of a superconductor with tem-
perature and residual thermal expansion coefficients of materials give rise to temperature sensi-
tivity in a superconducting accelerometer.  These occur through temperature gradients and mis-
matches in the accelerometers (Chan and Paik, 1987).  From our experience with the SGG, how-
ever, this noise is expected to be negligible with the temperature stabilized to 5 µK.   

Total errors.  Table 1 combines all the errors for the ISS experiment.  To reduce the random 
noise to the levels listed, a 90-day integration period was assumed.  Dominant error sources are 
the intrinsic noise of the differential accelerometer and the platform noise.  These errors can be 
reduced by at least two orders of magnitude by going to a free-flyer. 
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6. Expected Resolution  
By equating the total error with the expected Yukawa 

signal, we compute the minimum detectable |α | .  Figure 1 
shows the 2σ errors plotted as a function of λ .  The best 
resolution of ISLES on board ISS is |α |  = 2 × 10–5 at λ = 
100 µm ~ 1 mm.  Extra dimensions will be searched to R2 
≥ 5 µm and axions with strength 10 - 100 times below the 
maximum will be detected. 

The resolution of the experiment could be improved by 
reducing several errors.  The metrology and density errors 
could be reduced by fabricating the source mass out of a 
crystalline material such as sapphire or quartz, which can 
be optically polished.  The masses would then be coated 
with a thin layer of Nb.  The vibration noise can be im-
proved by several orders of magnitude by going to a free-flyer.  Lower vibration levels will al-
low much softer suspension of the test masses and thus will result in higher instrument sensitiv-
ity.  The quieter platform will also allow a smaller gap between the masses.  With these im-
provements, a free-flyer ISLES is expected to achieve the resolution depicted by the bottom 
curve in Figure 1.  A free-flyer option of ISLES is under investigation. 

Error Source Error  
(× 10–18 m s–2)

Metrology 15 
Random (90 days) 
   Intrinsic 25 
   ISS vibration 23 
   Gravity noise < 1 
Vibration coupling < 1 
Magnetic coupling < 10 
Electric charge < 10 
Other (30% margin) 33 
Total 52 

Table 1.  Error budget.

Figure 1 also shows the expected sensitivity of our ground experiment.  Under 1-g, the test 
masses will be suspended mechanically by cantilever springs similar to the source mass.  The re-
sulting stiffness of the DM modes (≥ 5 Hz) will compromise the resolution of the experiment to 
|α |  = 10–3 at λ = 100 µm.  However, this resolution already improves over the existing limit by 
four orders of magnitude and will be a great stepping stone for a space experiment.   

7. Ground Test Apparatus 
In order to set a milestone for the 1/r2 law test and work out the operational procedures for 

the orbital experiment, we are constructing a ground test apparatus.  Figure 6 is an expanded 
cross section of the apparatus.  A major departure from the space instrument is the mechanical 
suspension of the test masses.   

This ground experiment will provide an opportunity to demonstrate the required scale factor 
match and axis alignment of the test masses.  In addition, the integrity of the superconducting 
shield and the level of magnetic crosstalk will be investigated.  In the process of designing and 
carrying out error analysis for the ground experiment, we have discovered that the mechanical 
cross coupling through the source-driven distortion of the housing is a critical error source.  To 
decouple the detector sufficiently from this distortion, we have found it necessary to insert a 
weak mechanical link between the outer rim, which supports the source mass, and the inner test 
mass blocks (see Figure 6).  This feature will also be incorporated into the design of ISLES in-
strument. 

ISLES will use the SGG technology fully developed at the University of Maryland.  The 
SGG has been used to perform a null test of Newton’s law at sensitivity ten times beyond that of 
the other methods at 1-meter distance (Moody and Paik, 1993).  The instrument proposed for 
ISLES is very similar to the existing SGG.  The experimental procedure and error analysis are 
also similar in many ways to those in the meter-scale 1/r2 law test, already carried out with the 
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SGG.  However, the 
present short-range 
experiment is much 
more sensitive to the 
density inhomoge-
neity and dimen-
sional errors of the 
source mass.   

The meter-scale 
experiment em-
ployed a Gaussian 
null detector (Paik, 
1979), which made 
it relatively insensi-
tive to the source er-
rors.  In the present 
experiment, the 
source itself must 
produce a uniform 
field.  The test 
masses are located 
so close (~ 100 µm) 
to the surfaces of the source mass that they will be directly sensitive to the imperfections of the 
source mass.  At present, we are exerting a major effort on understanding and controlling the 
source metrology errors. 
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Figure 6.  Expanded cross section of the ground experiment. 

References 
Adelberger, E. G. et al. (1991), Ann. Rev. Nucl. Part. Sci. 41, 269. 
Altarev, I. S. et al. (1992), Phys. Lett. B 276, 242. 
Arkani-Hamed, N., Dimopoulos, S., and Dvali, G. (1999), Phys. Rev. D 59, 086004. 
Blaser, J.-P. et al. (1996), STEP, Report on the Phase A Study, SCI(96)5. 
Chan, H. A. and Paik, H. J. (1987), Phys. Rev. D 35, 3551. 
Cullen, S. and Perelstein, M. (1999), preprint hep-ph/9903422. 
Hall, L. J. and Smith, D. (1999), Phys. Rev. D 60, 085008. 
Hannestad, S. and Raffelt, G. G. (2002), Phys. Rev. Lett. 88, 071301. 
Hoyle, C. D. et al. (2001), Phys. Rev. Lett. 86, 1418. 
Lamoreaux, S. K. (1997), Phys. Rev. Lett. 78, 5. 
Long, J. C. et al. (2003), Nature 421, 922. 
Moody, M. V. and Paik, H. J. (1993), Phys. Rev. Lett. 70, 1195. 
Moody, M. V., Canavan E. R., and Paik, H. J. (2002), Rev. Sci. Instrum. 73, 3957. 
Paik, H. J. (1979), Phys. Rev. D 19, 2320. 
Peccei, R. D. and Quinn, H. (1977), Phys. Rev. Lett. 38, 1440. 
Rigby, K. W., Marek, D., and Chui, T. C. P. (1990), Rev. Sci. Inst. 2, 834.  
Turner, M. S. (1990), Phys. Rep. 197, 67. 
Weinberg, S. (1978), Phys. Rev. Lett. 40, 223.  
Wilczek, F. (1978), Phys. Rev. Lett. 40, 279. 

 954



Microwave Cavity Clocks On Space Station

J. A. Lipa, J. A. Nissen, S. Wang, D. A. Stricker and D. Avaloff
Physics Department, Stanford University, Stanford, CA 94305, USA

We describe the status of a microwave cavity clock experiment to perform improved tests
of Local Position Invariance and Lorentz Invariance on the International Space Station in
conjunction with atomic clocks. Significant improvements over present bounds are
expected in both cases. The oscillators can also be used to enhance the performance of
atomic clocks at short time scales for other experiments.
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Abstract

This paper discusses new fundamental physics experiment that will test relativistic grav-
ity at the accuracy better than the effects of the second order in the gravitational field
strength, ∝ G2. The Laser Astrometric Test Of Relativity (LATOR) mission uses laser
interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to
accurately measure deflection of light in the solar gravity. The key element of the exper-
imental design is a redundant geometry optical truss provided by a long-baseline (100 m)
multi-channel stellar optical interferometer placed on the International Space Station (ISS).
The spatial interferometer is used for measuring the angles between the two spacecraft and
for orbit determination purposes. In Euclidean geometry, determination of a triangle’s three
sides determines any angle therein; with gravity changing the optical lengths of sides passing
close by the Sun and deflecting the light, the Euclidean relationships are overthrown. The
geometric redundancy enables LATOR to measure the departure from Euclidean geometry
caused by the solar gravity field to a very high accuracy.

LATOR will not only improve the value of the parameterized post-Newtonian (PPN) γ to
unprecedented levels of accuracy of 1 part in 108, it will also reach ability to measure effects
of the next post-Newtonian order (c−4) of light deflection resulting from gravity’s intrinsic
non-linearity. The solar quadrupole moment parameter, J2, will be measured with high
precision, as well as a variety of other relativistic effects including Lense-Thirring precession.
LATOR will lead to very robust advances in the tests of Fundamental physics: this mission
could discover a violation or extension of general relativity, or reveal the presence of an
additional long range interaction in the physical law. There are no analogs to the LATOR
experiment; it is unique and is a natural culmination of solar system gravity experiments.

1 Introduction

Einstein’s general theory of relativity (GR) began with its empirical success in 1915 by explain-
ing the anomalous perihelion precession of Mercury’s orbit, using no adjustable theoretical
parameters. Shortly thereafter, Eddington’s 1919 observations of star lines-of-sight during a
solar eclipse confirmed the doubling of the deflection angles predicted by GR as compared to
Newtonian and Equivalence Principle arguments. From these beginnings, the general theory
of relativity has been verified at ever higher accuracy. Thus, microwave ranging to the Viking
Lander on Mars yielded accuracy ∼0.1% in the tests of GR [1–3]. The astrometric observations
of quasars on the solar background performed with Very-Long Baseline Interferometry (VLBI)

1Email addresses: turyshev@jpl.nasa.gov, mshao@huey.jpl.nasa.gov, kennordtvedt@imt.net
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improved the accuracy of the tests of gravity to ∼ 0.03% [4–6]. Lunar Laser Ranging (LLR), a
continuing legacy of the Apollo program, provided ∼ 0.01% verification of the general relativity
via precision measurements of the lunar orbit [7–14]. Finally, the recent experiments with the
Cassini spacecraft may improve the accuracy of the tests to ∼ 0.008% [15]. As a result, by
now not only the “non-relativistic,” Newtonian regime is well understood, but also the first
“post-Newtonian” approximation is also well-studied, making general relativity the standard
theory of gravity when astrometry and spacecraft navigation are concerned.

However, the continued inability to merge gravity with quantum mechanics and recent ob-
servations in cosmology indicate that the pure tensor gravity of general relativity needs modifi-
cation or augmentation. Recent work in scalar-tensor extensions of gravity which are consistent
with present cosmological models [16, 17] motivate new searches for very small deviations of
relativistic gravity in the solar system, at levels of 10−5 to 10−7 of the post-Newtonian effects or
essentially to achieve accuracy that enables measurement of the effects of the 2nd order in the
gravitational field strength (∝ G2). This will require a several order of magnitude improvement
in experimental precision from present tests. At the same time, it is well understood that the
ability to measure the second order light deflection term would enable one to demonstrate even
higher accuracy in measuring the first order effect, which is of the utmost importance for the
gravitational theory and is the challenge for the 21st century Fundamental physics.

When the light deflection in solar gravity is concerned, the magnitude of the first order
effect as predicted by GR for the light ray just grazing the limb of the Sun is ∼ 1.75 arcsecond.
The effect varies inversely with the impact parameter. The second order term is almost six
orders of magnitude smaller resulting in ∼ 3.5 microarcseconds (µas) light deflection effect, and
which falls off inversely as the square of the light ray’s impact parameter [18–22]. The relativistic
frame-dragging term2 is ±0.7 µas, and contribution of the solar quadrupole moment, J2, is sized
as 0.2 µas (using the value of the solar quadrupole moment J2 ' 10−7. The small magnitudes of
the effects emphasize the fact that, among the four forces of nature, gravitation is the weakest
interaction; it acts at very long distances and controls the large-scale structure of the universe,
thus, making the precision tests of gravity a very challenging task.

The LATOR mission concept will directly address the challenges discussed above. The test
will be performed in the solar gravity field using optical interferometry between two micro-
spacecraft. Precise measurements of the angular position of the spacecraft will be made using
a fiber coupled multi-chanel led optical interferometer on the International Space Station (ISS)
with a 100 m baseline. The primary objective of the LATOR Mission will be to measure
the gravitational deflection of light by the solar gravity to accuracy of 0.1 picoradians, which
corresponds to ∼10 picometers on a 100 m interferometric baseline.

In conjunction with laser ranging among the spacecraft and the ISS, LATOR will allow
measurements of the gravitational deflection by a factor of 30,000 better than has previously
been accomplished. In particular, this mission will not only measure the key3 parameterized
post-Newtonian (PPN) γ to unprecedented levels of accuracy of one part in 108, it will also
reach ability to measure the next post-Newtonian order (c−4) of light deflection resulting from
gravity’s intrinsic non-linearity. As a result, this experiment will measure values of other PPN
parameters such as δ to 1 part in 103 (never measured before), the solar quadrupole moment

2Gravitomagnetic frame dragging is the effect in which both the orientation and trajectory of objects in orbit
around a body are altered by the gravity of the body’s rotation. It was studied by Lense and Thirring in 1918.

3The Eddington parameter γ, whose value in general relativity is unity, is perhaps the most fundamental PPN
parameter, in that (1 − γ) is a measure, for example, of the fractional strength of the scalar gravity interaction
in scalar-tensor theories of gravity. Within perturbation theory for such theories, all other PPN parameters to
all relativistic orders collapse to their general relativistic values in proportion to (1 − γ).
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parameter J2 to 1 part in 20, and the frame dragging effects on light due to the solar angular
momentum to precision of 1 parts in 102.

The LATOR mission technologically is a very sound concept; all technologies that are needed
for its success have been already demonstrated as a part of the JPL’s Space Interferometry
Mission (SIM) development.4 The LATOR concept arose from several developments at NASA
and JPL that initially enabled optical astrometry and metrology, and also led to developing
expertize needed for the precision gravity experiments. Technology that has become available
in the last several years such as low cost microspacecraft, medium power highly efficient solid
state lasers, and the development of long range interferometric techniques make possible an
unprecedented factor of 30,000 improvement in this test of general relativity possible. This
mission is unique and is the natural next step in solar system gravity experiments which fully
exploits modern technologies.

LATOR will lead to very robust advances in the tests of Fundamental physics: this mission
could discover a violation or extension of general relativity, or reveal the presence of an addi-
tional long range interaction in the physical law. With this mission testing theory to several
orders of magnitude higher precision, finding a violation of general relativity or discovering
a new long range interaction could be one of this era’s primary steps forward in Fundamen-
tal physics. There are no analogs to the LATOR experiment; it is unique and is a natural
culmination of solar system gravity experiments.

This paper organized as follows: Section 2 provides more information about the theoretical
framework, the PPN formalism, used to describe the gravitational experiments in the solar
system. This section also summarizes the science motivation for the precision tests of gravity
that recently became available. Section 3 provides the overview for the LATOR experiment
including the preliminary mission design. In Section 4 we discuss the next steps that will taken
in the development of the LATOR mission.

2 Scientific Motivation

2.1 PPN Parameters and Their Current Limits

Generalizing on a phenomenological parameterization of the gravitational metric tensor field
which Eddington originally developed for a special case, a method called the parameterized
post-Newtonian (PPN) metric has been developed (see [7, 8, 22–25]. This method represents
the gravity tensor’s potentials for slowly moving bodies and weak interbody gravity and is valid
for a broad class of metric theories including general relativity as a unique case. The several
parameters in the PPN metric expansion vary from theory to theory, and they are individually
associated with various symmetries and invariance properties of underlying theory. Gravity
experiments can be analyzed in terms of the PPN metric, and an ensemble of experiments will
determine the unique value for these parameters, and hence the metric field, itself.

In locally Lorentz-invariant theories the expansion of the metric field for a single, slowly-
rotating gravitational source in PPN parameters is given by:

g00 = 1 − 2
M

r

(
1 − J2

R2

r2

3 cos2 θ − 1
2

)
+ 2β

M2

r2
+ O(c−6),

g0i = 2(γ + 1)
[ ~J × ~r]i

r3
+ O(c−5),

4Accuracy of 5 picometers was already demonstrated in our SIM-related studies.
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gij = −δij

[
1 + 2γ

M

r

(
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R2

r2

3 cos2 θ − 1
2

)
+

3
2
δ
M2

r2

]
+ O(c−6), (1)

where M is the mass of the Sun, R is the radius of the Sun, ~J is the angular momentum of the
Sun, J2 is the quadrupole moment of the Sun, and r is the distance between the observer and the
center of the Sun. β, γ, δ are the PPN parameters and in GR they are all equal to l. The term
M/r in the g00 equation is the Newtonian limit; the terms multiplied by the post-Newtonian
parameters β, γ, are post-Newtonian terms. The term multiplied by the post-post-Newtonian
parameter δ also enters the calculation of the relativistic light deflection.

This PPN expansion serves as a useful framework to test relativistic gravitation in the
context of the LATOR mission. In the special case, when only two PPN parameters (γ, β) are
considered, these parameters have clear physical meaning. Parameter γ represents the measure
of the curvature of the space-time created by a unit rest mass; parameter β is a measure of the
non-linearity of the law of superposition of the gravitational fields in the theory of gravity. GR,
which corresponds to γ = β = 1, is thus embedded in a two-dimensional space of theories. The
Brans-Dicke is the best known theory among the alternative theories of gravity. It contains,
besides the metric tensor, a scalar field and an arbitrary coupling constant ω, which yields the
two PPN parameter values γ = (1+ω)/(2+ω), and β = 1. More general scalar tensor theories
yield values of β different from one.

PPN formalism proved to be a versatile method to plan gravitational experiments in the
solar system and to analyze the data obtained [7, 8, 22-30]. Different experiments test different
combinations of these parameters (for more details, see [24]). The most precise value for the
PPN parameter γ is at present given by Eubanks et al [4] as: |γ−1| = 0.0003, which was obtained
by means of astrometric VLBI. The secular trend of Mercury’s perihelion, when describe in the
PPN formalism, depends on another linear combination of the PPN parameters γ and β and
the quadrupole coefficient J2� of the solar gravity field: λ� = (2+2γ−β)/3+0.296×J2�×104.
The combination of parameters λ� = 0.9996± 0.0006 was obtained with the Mercury ranging
data [31]. The PPN formalism has also provided a useful framework for testing the violation of
the Strong Equivalence Principle (SEP) for gravitationally bound bodies. In that formalism,
the ratio of passive gravitational mass MG to inertial mass MI of the same body is given by
MG/MI = 1− ηUG/(M0c

2), where M0 is the rest mass of this body and UG is the gravitational
self-energy. The SEP violation is quantified by the parameter η, which is expressed in terms of
the basic set of PPN parameters by the relation η = 4β − γ − 3. Analysis of planetary ranging
data recently yielded an independent determination of parameter γ [14, 32, 33]: |γ − 1| =
0.0015± 0.0021; it also gave β with accuracy at the level of |β− 1| = −0.0010± 0.0012. Finally,
with LLR finding that Earth and Moon fall toward the Sun at rates equal to 1.5 parts in 1013,
even in a conservative scenario where a composition dependence of acceleration rates masks a
gravitational self energy dependence η is constrained to be less than 0.0008 [33]; without such
accidental cancelation the η constraint improves to 0.0003.

The technology has advanced to the point that one can consider carrying out direct tests in
a weak field to second order in the field strength parameter, GM/Rc2. Although any measured
anomalies in first or second order metric gravity potentials will not determine strong field
gravity, they would signal that modifications in the strong field domain will exist. The converse
is perhaps more interesting: if to high precision no anomalies are found in the lowest order
metric potentials, and this is reinforced by finding no anomalies at the next order, then it
follows that any anomalies in the strong gravity environment are correspondingly quenched.
We shall discuss the recent motivations for the precision gravity tests below in more details.
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2.2 Motivations for Precision Gravity Experiments

After almost ninety years since general relativity was born, Einstein’s theory has survived every
test. Such a longevity, along with the absence of any adjustable parameters, does not mean
that this theory is absolutely correct, but it serves to motivate more accurate tests to determine
the level of accuracy at which it is violated. A significant number of these tests were conducted
over the last 35 years. As an upshot of these efforts, most alternative theories have been put
aside; only those theories of gravity flexible enough have survived, the accommodation being
provided by the free parameters and the coupling constant of the theory.

Recently considerable interest has been shown in the physical processes occurring in the
strong gravitational field regime. It should be noted that general relativity and some other
alternative gravitational theories are in good agreement with the experimental data collected
from the relativistic celestial mechanical extremes provided by the relativistic motions in the
binary millisecond pulsars. However, many modern theoretical models, which include general
relativity as a standard gravity theory, are faced with the problem of the unavoidable appearance
of space-time singularities. It is generally suspected that the classical description, provided by
general relativity, breaks down in a domain where the curvature is large, and, hence, a proper
understanding of such regions requires new physics.

The continued inability to merge gravity with quantum mechanics indicates that the pure
tensor gravity of general relativity needs modification or augmentation. The tensor-scalar the-
ories of gravity, where the usual general relativity tensor field coexists with one or several
long-range scalar fields, are believed to be the most promising extension of the theoretical
foundation of modern gravitational theory. The superstring, many-dimensional Kaluza-Klein,
and inflationary cosmology theories have revived interest in the so-called “dilaton fields,” i.e.
neutral scalar fields whose background values determine the strength of the coupling constants
in the effective four-dimensional theory. The importance of such theories is that they provide
a possible route to the quantization of gravity. Although the scalar fields naturally appear in
the theory, their inclusion predicts different relativistic corrections to Newtonian motions in
gravitating systems. These deviations from GR lead to a violation of the Equivalence Principle
(either weak or strong or both), modification of large-scale gravitational phenomena, and gen-
erally lead to space and time variation of physical “constants.” As a result, this progress has
provided new strong motivation for high precision relativistic gravity tests.

The recent theoretical findings suggest that the present agreement between Einstein’s theory
and experiment might be naturally compatible with the existence of a scalar contribution to
gravity. In particular, Damour and Nordtvedt [16, 17] (see also [34–37] for non-metric versions
of this mechanism) have recently found that a scalar-tensor theory of gravity may contain a
“built-in” cosmological attractor mechanism towards GR. A possible scenario for cosmological
evolution of the scalar field was given in [12, 17]. Their speculation assumes that the parameter
1
2(1− γ) was of order of 1 in the early universe, at the time of inflation, and has evolved to be
close to, but not exactly equal to, zero at the present time (Figure 1 illustrates this mechanism
in more details). The expected deviation from zero may be of the order of the inverse of the
redshift of the time of inflation, or somewhere between 1 part per 105 and 1 part per 107

depending on the total mass density of the universe: 1 − γ ∼ 7.3 × 10−7(H0/Ω3
0)

1/2, where
Ω0 is the ratio of the current density to the closure density and H0 is the Hubble constant
in units of 100 km/sec/Mpc. This recent work in scalar-tensor extensions of gravity that are
consistent with, indeed often part of, present cosmological models motivates new searches for
very small deviations of relativistic gravity in the solar system, at levels of 10−5 to 10−7 of the
post-Newtonian effects.
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Figure 1: Typical cosmological dynamics of a background scalar field is shown if that field’s
coupling function to matter, V (φ), has an attracting point φ0. The strength of the scalar
interaction’s coupling to matter is proportional to the derivative (slope) of the coupling function,
so it weakens as the attracting point is approached, and both the Eddington parameters γ and
β (and all higher structure parameters as well) approach their pure tensor gravity values in this
limit. But a small residual scalar gravity should remain today because this dynamical process
is not complete, and that is what experiment seeks to find.

The theoretical arguments above have been unexpectedly joined by a number of exper-
imental results that motivate more-precise gravitational experiments. Among those are the
recent cosmological discoveries and the possible time variation detected in the fine structure
constant. In particular, recent astrophysical measurements of the angular structure of the cos-
mic microwave background [38], the masses of large-scale structures [39], and the luminosity
distances of type Ia supernovae [40, 41] have placed stringent constraints on the cosmological
constant Λ and also have led to a revolutionary conclusion: the expansion of the universe is
accelerating. The implication of these observations for cosmological models is that a classically
evolving scalar field currently dominates the energy density of the universe. Such models have
been shown to share the advantages of Λ: compatibility with the spatial flatness predicted
inflation; a universe older than the standard Einstein-de Sitter model; and, combined with cold
dark matter, predictions for large-scale structure formation in good agreement with data from
galaxy surveys. Compared to the cosmological constant, these scalar field models are consis-
tent with the supernovae observations for a lower matter density, Ω0 ∼ 0.2, and a higher age,
(H0t0) ≈ 1. If this is indeed the case, the level γ − 1 ∼ 10−6 − 10−7 would be the lower bound
for the present value of PPN parameter γ [16, 17]. Combined with the fact that scalar field
models imprint distinctive signatures on the cosmic microwave background (CMB) anisotropy,
they remain currently viable and should be testable in the near future.

This completely unexpected discovery demonstrates the importance of testing the important
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ideas about the nature of gravity. We are presently in the “discovery” phase of this new physics,
and while there are many theoretical conjectures as to the origin of a non-zero Λ, it is essential
that we exploit every available opportunity to elucidate the physics that is at the root of the
observed phenomena.

There is also experimental evidence for time-variability in the fine structure constant, α, at
the level of α̇/(αH0) ∼ 10−5 [42]. This is very similar to time variation in the gravitational
constant, which is at the post-Newtonian level expressed as Ġ/(GH0) ≈ η = 4β − γ − 3, thus
providing a tantalizing motivation for further tests of the SEP (Strong Equivalence Principle)
parameter η. A similar conclusion resulted from the recent analysis performed in [30, 44, 45].
These new findings necessitate the measurements of γ and β in the range from 10−6 to 10−8 to
test the corresponding gravitational scenario, thus requiring new gravitational physics missions.

Even in the solar system, GR still faces challenges. There is the long-standing problem
of the size of the solar quadrupole moment and its possible effect on the relativistic perihelion
precession of Mercury (see review in [24]). The interest in lies in the study of the behavior of the
solar quadrupole moment versus the radius and the heliographic latitudes. This solar parameter
has been very often neglected in the past, because it was rather difficult to determine an accurate
value. The improvement of our knowledge of the accuracy of J2 is certainly due to the fact
that, today, we are able to take into account the differential rotation with depth. In fact, the
quadrupole moment plays an important role in the accurate computation of several astrophysical
quantities, such as the ephemeris of the planets or the general relativistic prediction for the
precession of the perihelion of Mercury and other minor planets such as Icarus. Finally, it is
necessary to accurately know the value of the quadrupole moment to determinate the shape of
the Sun, that is to say its oblateness. Solar oblateness measurements by Dicke and others in
the past gave conflicting results for J2 (reviewed on p. 145 of [46]). A measurement of solar
oblateness with the balloon-borne Solar Disk Sextant gave a quadrupole moment on the order
of 2 × 10−7 [47]. Helioseismic determinations using solar oscillation data have since implied
a small value for J2, on the order of ∼ 10−7, that is consistent with simple uniform rotation
[24, 48, 49]. However, there exist uncertainties in the helioseismic determination for depths
below roughly 0.4 R�, which might permit a rapidly rotating core. LATOR can measure J2

with accuracy sufficient to put this issue to rest.
Finally, there is now multiple evidence indicating that 70% of the critical density of the uni-

verse is in the form of a “negative-pressure” dark energy component; there is no understanding
as to its origin and nature. The fact that the expansion of the universe is currently undergoing
a period of acceleration now seems inescapable: it is directly measured from the light-curves of
several hundred type Ia supernovae [40, 41, 50], and independently inferred from observations
of CMB by the WMAP satellite [51] and other CMB experiments [52, 53]. Cosmic speed-up
can be accommodated within general relativity by invoking a mysterious cosmic fluid with large
negative pressure, dubbed dark energy. The simplest possibility for dark energy is a cosmolog-
ical constant; unfortunately, the smallest estimates for its value are 55 orders of magnitude too
large (for reviews see [54, 55]). Most of the theoretical studies operate in the shadow of the
cosmological constant problem, the most embarrassing hierarchy problem in physics. This fact
has motivated a host of other possibilities, most of which assume Λ = 0, with the dynamical
dark energy being associated with a new scalar field (see [56] and references therein). However,
none of these suggestions is compelling and most have serious drawbacks. Given the challenge
of this problem, a number of authors considered the possibility that cosmic acceleration is not
due to some kind of stuff, but rather arises from new gravitational physics (see discussion in
[56–59]). In particular, extensions to general relativity in a low curvature regime were shown
to predict an experimentally consistent universe evolution without the need for dark energy.

7
62



These dynamical models are expected to produce measurable contribution to the parameter γ
in experiments conducted in the solar system also at the level of 1 − γ ∼ 10−7 − 10−9, thus
further motivating the relativistic gravity research. Therefore, the PPN parameter γ may be
the only key parameter that holds the answer to most of the questions discussed above.

In summary, there are a number of theoretical reasons to question the validity of GR.
Despite the success of modern gauge field theories in describing the electromagnetic, weak, and
strong interactions, it is still not understood how gravity should be described at the quantum
level. In theories that attempt to include gravity, new long-range forces can arise in addition
to the Newtonian inverse-square law. Even at the purely classical level, and assuming the
validity of the Equivalence Principle, Einstein’s theory does not provide the most general way
to generate the space-time metric. Regardless of whether the cosmological constant should be
included, there are also important reasons to consider additional fields, especially scalar fields.
The LATOR mission is designed to address theses challenges.

2.3 Possible Improvement of PPN Parameters in the Near Future

Prediction of possible deviation of PPN parameters from the general relativistic values provides
a robust theoretical paradigm and constructive guidance for experiments that would push be-
yond the present empirical upper bound on γ of |γ − 1| < 3 × 10−4 (obtained by astrometric
VLBI [4]). In addition to experiments, which probe parameter γ, any experiment pushing the
present upper bounds on β (i.e. |β − 1| < 5 × 10−4 from Anderson et al. [14, 33] or LLR
constraint on parameter η = 4β−γ−3 ≤ 3×10−4 [29, 33, 44, 45]) will also be of great interest.
Note that the Eddington parameter γ, whose value in general relativity is unity, is perhaps the
most fundamental PPN parameter, in that (1 − γ) is a measure, for example, of the fractional
strength of the scalar gravity interaction in scalar-tensor theories of gravity. Within perturba-
tion theory for such theories, all other PPN parameters to all relativistic orders collapse to their
general relativistic values in proportion to (1 − γ). Therefore, measurement of the first order
light deflection effect at the level of accuracy comparable with the second-order contribution
would provide the crucial information separating alternative scalar-tensor theories of gravity
from general relativity [22].

By testing gravity at the level of accuracy needed to see the effects of the second order, one
does not simply discriminate among the alternative theories of gravity; in effect, one obtains the
critical information on the beginning, current evolution and ultimate future of our universe. The
recent remarkable progress in observational cosmology has put general relativity at a test again
by suggesting a non-Einsteinian model of universe’s evolution. From the theoretical standpoint,
the challenge is even stronger - if the gravitational field is to be quantized, the general theory
of relativity will have to be modified. This is why the recent advances in the scalar-tensor
extensions of gravity, which are consistent with the current inflationary model of the Big Bang,
have motivated a new search for a very small deviation of from Einstein’s theory, at the level
of three to five orders of magnitude below the level tested by experiment.

Tests of fundamental gravitational physics feature prominently among NASA’s goals, mis-
sions, and programs. Among the future NASA missions that will study the nature of gravity,
we discuss here the missions most relevant to LATOR science.

• Gravity Probe-B will be able to improve the test of the geodetic precession; it will also
provide the test the relativistic Lense-Thirring precession. The goal is to measure the
geodetic precession effect to 2 parts in 105 and to measure the frame-dragging effect to 3
parts in 103. As a result, this experiment will permit direct measurement of the parameter
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γ with accuracy of ∼ 5 × 10−5.

– While the LATOR’s accuracy to measure the Lense-Thirring precession will be lim-
ited by the small value of the solar angular momentum, the PPN parameter γ will
be measured with an accuracy of almost 3.5 orders of magnitude better than that
expected with GP-B.

• An improvement in measuring the PPN parameter γ is expected from the Cassini mission.
There was a successful solar conjunction experiment in 2002,5 which allowed studying the
gravitational time delay effect. It is expected that this experiment will yield parameter γ
to an accuracy of ∼ 5.7 × 10−5 [15, 60].

– The LATOR mission will perform an experiment essentially very similar to the
Cassini conjunction experiments. However, the accuracy of measuring parameter
γ will be almost 4 orders of magnitude better. This improvement is due to the op-
tical technologies proposed for LATOR that enable to conduct the light deflection
experiment to be conducted almost at the limb of the Sun.

• Data at mm-accuracy is expected from the new LLR ranging station constructed by the
APOLLO project [61]. This new technology will result in the measurements of PPN
parameter η = 4β − 3− γ with accuracy of one part in 105 [9, 10, 61]. LLR contribution
to the relativistic tests of gravity comes from its ability to study the lunar orbit to a high
accuracy. As such, LLR is basically a β experiment rather than a γ experiment, primarily
testing the non-linearity of gravity theory.6

– The LATOR mission will benefit from the technologies developed for LLR over the
more than 35-years history of this experiment. However, LATOR will be able to
directly measure the PPN parameter γ with an accuracy of almost 4 orders of mag-
nitude better than currently available.

• A configuration similar to the geometry of the Cassini conjunction experiments may be
utilized for the microwave ranging between the Earth and a lander on Mars. If the
lander will be equipped with a Cassini-class X- and Ka-band communication system, the
measurement of the PPN parameter γ is possible with an accuracy of ∼1 part in 106 [62].

– As oppose to any scenario involving ranging out to the Mars vicinity, the LATOR
mission will not be affected by the difficulty of the asteroid modeling problem. This
will allow LATOR to outperform such a mission by at least two orders of magnitude.

• An ambitious test of one of the foundations of general relativity – the Equivalence Principle
– is proposed for the STEP (Space Test of Equivalence Principle) mission that is currently
being developed by the Stanford GB-P group. The experiment will be able to search
for a violation of the Equivalence Principle with a fractional acceleration accuracy of
∆a/a ∼ 10−18 [63, 64].

– The STEP mission will be able to test very precisely the non-metric breakdowns of
metric gravity; however, the results of this mission will say nothing about metric

5Becasue of the reaction wheel malfunctioning, the 2003 Cassini spacecraft solar conjunction experiment
unfortunately did not produce useful data for the tests of relativity [60].

6For LLR the PPN parameter γ is usually evaluated by other means, including Sun-induced time delay on
interplanetary ranging and ray bending using VLBI [33].

9
64



gravity itself. The LATOR mission is designed specifically to test the metric nature
of the gravitational interaction. It will be able to test a number of relativistic effects
predicted by the metric gravity and will significantly improve the accuracy for several
of these tests. In particular, the LATOR’s accuracy will be sufficient to measure
effects of the second post-Newtonian order of light deflection resulting from gravity’s
intrinsic non-linearity (further testing the metric structure of the gravitational field);
it will provide the value for the solar quadrupole moment parameter, J2 (currently
unknown, limited to ∼ 10−7), and will measure the relativistic frame-dragging effect.

Concluding, we point out that the recent progress in relativistic gravity research resulted
in a significant tightening of the existing bounds on the PPN parameters obtained at the first
post-Newtonian level of accuracy. However, this improvement is not sufficient to lead to ground-
breaking tests of Fundamental physical laws addressed in Section 2.2. This is especially true, if
the cosmological attractor discovered in [4] is more robust, time variation in the fine structure
constant will be confirmed in other experiments and various GR extensions will demonstrate
feasibility of these methods for cosmology and relativistic gravity. The LATOR mission is pro-
posed to directly address the challenges discussed above. We shall now discuss the LATOR
mission in more details.

3 Overview of LATOR

The LATOR experiment uses laser interferometry between two micro-spacecraft (placed in he-
liocentric orbits, at distances ∼ 1 AU from the Sun) whose lines of sight pass close by the Sun
to accurately measure deflection of light in the solar gravity.7 Another component of the exper-
imental design is a long-baseline (∼ 100 m) multi-channel stellar optical interferometer placed
on the International Space Station (ISS). Figure 2 shows the general concept for the LATOR
missions including the mission-related geometry, experiment details and required accuracies.

3.1 Mission Design

The LATOR mission consists of two low cost micro-spacecraft8 with three interferometric links
between the craft and a beacon station on the ISS. One of the longest arms of the triangle (∼
2 AU) passes near the Sun. The two spacecraft are in the helio-centric orbits and use lasers
to measure the distance between them and a beacon station on the ISS. The laser light passes
close to the Sun, which causes the light path to be both bent and lengthen. One spacecraft is at
the limb of the Sun, the other one is ∼ 1◦ away, as seen from the ISS. Each spacecraft uses laser
ranging to measure the distance changes to the other spacecraft. The spatial interferometer is
for measuring the angles between the two spacecraft and for the orbit determination purposes.

As evident from Figure 2, the key element of the LATOR experiment is a redundant geom-
etry optical truss to measure the departure from Euclidean geometry caused by Gravity. The
triangle in the figure has three independent quantities but the three arms are monitored with
laser metrology. From three measurements one can calculate the Euclidean value for any angle
in this triangle. In Euclidean geometry these measurements should agree to high accuracy.

7A version of LATOR with a ground-based receiver was proposed in 1994 (performed under NRA 94-OSS-15)
[65]. Due to atmospheric turbulence and seismic vibrations that are not common mode to the receiver optics, a
very long baseline interferometer (30 km) was proposed. This interferometer could only measure the differential
light deflection to an accuracy of 0.1 µas, with a spacecraft separation of less than 1 arc minutes.

8The goal is to launch both spacecraft on a single Delta II launch vehicle.
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Figure 2: Geometry of the LATOR experiment to measure deviations from the Euclidean
geometry in the solar gravitational field.

This geometric redundancy enables LATOR to measure the departure from Euclidean geome-
try caused by the solar gravity field to a very high accuracy. The difference in the measured
angle and its Euclidean value is the non-Euclidean signal. To avoid having to make absolute
measurements, the spacecraft are placed in an orbit where their impact parameters, the dis-
tance between the beam and the center of the Sun, vary significantly from 10R� to 1R� over
a period of ∼ 20 days.

The shortening of the interferometric baseline (as compare to the previously studied version
[65]) is achieved solely by going into space to avoid the atmospheric turbulence and Earth’s
seismic vibrations. On the space station, all vibrations can be made common mode for both ends
of the interferometer by coupling them by an external laser truss. This relaxes the constraint on
the separation between the spacecraft, allowing it to be as large as a few degrees, as seen from
the ISS. Additionally, the orbital motion of the ISS provides variability in the interferometer’s
baseline projection as needed to resolve the fringe ambiguity of the stable laser light detection
by an interferometer.

The first order effect of light deflection in the solar gravity caused by the solar mass monopole
is 1.75 arcseconds (see Table 1 for more details), which corresponds to a delay of ∼0.85 mm
on a 100 m baseline. We currently are able to measure with laser interferometry distances
with an accuracy (not just precision but accuracy) of < 1 picometer. In principle, the 0.85
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Table 1: Comparable sizes of various light deflection effects in the solar gravity field.

Effect Analytical Form Value (µas) Value (pm)

First Order 2(1 + γ)M
R 1.75× 106 8.487× 108

Second Order ([2(1 + γ)− β + 3
4δ]π − 2(1 + γ)2)M2

R2 3.5 1702

Frame-Dragging ±2(1 + γ) J
R2 ±0.7 ±339

Solar Quadrupole 2(1 + γ)J2
M
R 0.2 97

mm gravitational delay can be measured with 10−9 accuracy versus 10−4 available with current
techniques. However, we use a conservative estimate for the delay of 10 pm, which would
produce the measurement of γ to accuracy of 1 part in 10−8 (i.e., improving the accuracy in
determining this parameter by a factor of 30,000) rather than 1 part in 10−9. The second order
light deflection is approximately 1700 pm and with 10 pm accuracy it could be measured with
accuracy of ∼ 1 × 10−3, including first ever measurement of the PPN parameter δ. The frame
dragging effect would be measured with ∼ 1× 10−2 accuracy and the solar quadrupole moment
(using the theoretical value of the solar quadrupole moment J2 ' 10−7) can be modestly
measured to 1 part in 20, all with respectable signal to noise ratios.

The laser interferometers use ∼2W lasers and ∼20 cm optics for transmitting the light
between spacecraft. Solid state lasers with single frequency operation are readily available and
are relatively inexpensive. For SNR purposes we assume the lasers are ideal monochromatic
sources. For simplicity we assume the lengths being measured are 2AU = 3 × 108 km. The
beam spread is 1 µm/20 cm = 5 µrad (1 arcsecond). The beam at the receiver is ∼1,500 km in
diameter; a 20 cm receiver will detect 1.71×102 photons/sec assuming 50% q.e. detectors. Five
picometer (pm) resolution for a measurement of γ to ∼ 10−8 is possible with approximately 10
seconds of integration.

As a result, the LATOR experiment will be capable of measuring the angle between the two
spacecraft to ∼ 0.01 µas, which allows light deflection due to gravitational effects to be measured
to one part in 108. Measurements with this accuracy will lead to a better understanding of
gravitational and relativistic physics. In particular, with LATOR, measurements of the first
order gravitational deflection will be improved by a factor of 30,000. LATOR will also be capable
of distinguishing between first order (∼ M/R) and second order (∼ M2/R2) effects. All effects,
including the first and second order deflections, as well as the frame dragging component of
gravitational deflection and the quadrupole deflection will be measured astrometrically. We
now outline the basic elements of the LATOR trajectory and optical design.

3.2 Trajectory – a 3:2 Earth Resonant Orbit

The objective of the LATOR mission includes placing two spacecraft into a heliocentric orbit
with a one year period so that observations may be made when the spacecraft are behind the
Sun as viewed from the ISS. The observations involve the measurement of the distance of the
two spacecraft using an interferometer on-board the ISS to determine the bending of light by
the Sun. The two spacecraft are to be separated by about 1◦, as viewed from the ISS.
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One trajectory option would be to use a Venus flyby to place the spacecraft in a 1 year
orbit (perihelion at Venus orbit ∼0.73 AU and aphelion ∼1.27 AU). One complication of this
approach is that the Venus orbit is inclined about 3.4◦ with respect to the ecliptic and the
out-of-plane position of Venus at the time of the flyby determines the orbit inclination [66].
The LATOR observations require that the spacecraft pass directly behind the Sun, i.e., with
essentially no orbit inclination. In order to minimize the orbit inclination, the Venus flyby would
need to occur near the time of Venus nodal crossing (i.e., around 7/6/2011). An approach with
a type IV trajectory and a single Venus flyby requires a powered Venus flyby with about 500
to 900 m/s. However, a type I trajectory to Venus with two Venus gravity assists would get
LATOR into a desirable 1 year orbit at Earth’s opposition. This option requires no ∆v and
provides repeated opportunities for the desired science observations. At the same time this
orbit has a short launch period ∼17 days which motivated us to look for an alternative.

A good alternative to the double Venus flyby scenario was found when we studied a possibil-
ity of launching LATOR into the orbit with a 3:2 resonance9 with the Earth [66]. For this orbit,
in 13 months after the launch, the spacecraft are within ∼ 10◦ of the Sun with first occultation
occuring in 15 months after launch (See Figures 3 and 4). At this point, LATOR is orbiting
at a slower speed than the Earth, but as LATOR approaches its perihelion, its motion in the
sky begins to reverse and the spacecraft is again occulted by the Sun 18 months after launch.
As the spacecraft slows down and moves out toward aphelion, its motion in the sky reverses
again and it is occulted by the Sun for the third and final time 21 months after launch. This
entire process will again repeat itself in about 3 years after the initial occultation; however,
there may be a small maneuver required to allow for more occultations. Therefore, to allow for
more occultations in the future, there may be a need for an extra few tens of m/s of ∆v.

The C3 required for launch will vary between ∼10.6 km2/s2 – 11.4 km2/s2 depending on the
time of launch, but it is suitable for a Delta II launch vehicle. The desirable ∼ 1◦ spacecraft
separation (as seen from the Earth) is achieved by performing a 30 m/s maneuver after the
launch. This results in the second spacecraft being within ∼ 0.6◦ – 0.9◦ separation during the
entire period of 3 occultations by the Sun.

Figures 3 and 4 show the trajectory and the occultations in more details. The first figure is
the spacecraft position in the solar system showing the Earth’s and LATOR’s orbits (in the 3:2
resonance) relative to the Sun. The epoch of this figure shows the spacecraft passing behind
the Sun as viewed from the Earth. The second figure shows the trajectory when the spacecraft
would be within 10 degrees of the Sun as viewed from the Earth. This period of 280 days
will occur once every 3 years, provided the proper maneuvers are performed. The two similar
periodic curves give the Sun-Earth-Probe angles for the 2 spacecraft; whereas the lower smooth
curve gives the angular separation of the spacecraft as seen from the Earth. We intend to
further study this trajectory as the baseline option for the LATOR mission.

3.3 Optical Design

A single aperture of the interferometer on the ISS consists of three 10 cm diameter telescopes.
One of the telescopes with a very narrow bandwidth laser line filter in front and with an InGAs
camera at its focal plane, sensitive to the 1.3 µm laser light, serves as the acquisition telescope
to locate the spacecraft near the Sun.

9The 3:2 resonance occurs when the Earth does 3 revolutions around the Sun while the spacecraft does exactly
2 revolutions of a 1.5 year orbit. The exact period of the orbit may vary slightly (<1%) from a 3:2 resonance
depending on the time of launch.
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Figure 3: View from the North Ecliptic of the LATOR spacecraft in a 3:2 resonance. The epoch
is taken near the first occultation.

Figure 4: The Sun-Earth-Probe angle during the period of 3 occultations (two periodic curves)
and the angular separation of the spacecraft as seen from the Earth (lower smooth line). Time
shown is days from the moment when one of the spacecraft is at 10◦ distance from the Sun.
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The second telescope emits the directing beacon to the spacecraft. Both spacecraft are
served out of one telescope by a pair of piezo controlled mirrors placed on the focal plane. The
properly collimated laser light (∼10W) is injected into the telescope focal plane and deflected
in the right direction by the piezo-actuated mirrors.

The third telescope is the laser light tracking interferometer input aperture, which can
track both spacecraft at the same time. To eliminate beam walk on the critical elements of
this telescope, two piezo-electric X-Y-Z stages are used to move two single-mode fiber tips
on a spherical surface while maintaining focus and beam position on the fibers and other
optics. Dithering at a few Hz is used to make the alignment to the fibers and the subsequent
tracking of the two spacecraft completely automatic. The interferometric tracking telescopes are
coupled together by a network of single-mode fibers whose relative length changes are measured
internally by a heterodyne metrology system to an accuracy of less than 10 picometer.

The spacecraft are identical in construction and contain a relatively high powered (2 W),
stable (2 MHz per hour ∼ 500 Hz per second), small cavity fiber-amplified laser at 1.3 µm.
Three quarters of the power of this laser is pointed to the Earth through a 20 cm aperture
telescope and its phase is tracked by the interferometer. With the available power and the
beam divergence, there are enough photons to track the slowly drifting phase of the laser light.
The remaining part of the laser power is diverted to another telescope, which points toward
the other spacecraft. In addition to the two transmitting telescopes, each spacecraft has two
receiving telescopes. The receiving telescope on the ISS, which points toward the area near
the Sun, has laser line filters and a simple knife-edge coronagraph to suppress the Sun light to
1 part in 10,000 of the light level of the light received from the space station. The receiving
telescope that points to the other spacecraft is free of the Sun light filter and the coronagraph.

In addition to the four telescopes they carry, the spacecraft also carry a tiny (2.5 cm)
telescope with a CCD camera. This telescope is used to initially point the spacecraft directly
toward the Sun so that their signal may be seen at the space station. One more of these small
telescopes may also be installed at right angles to the first one to determine the spacecraft
attitude using known, bright stars. The receiving telescope looking toward the other spacecraft
may be used for this purpose part of the time, reducing hardware complexity. Star trackers
with this construction have been demonstrated many years ago and they are readily available.
A small RF transponder with an omni-directional antenna is also included in the instrument
package to track the spacecraft while they are on their way to assume the orbital position
needed for the experiment.

The LATOR experiment has a number of advantages over techniques that use radio waves
to measure gravitational light deflection. Advances in optical communications technology al-
low low bandwidth telecommunications with the LATOR spacecraft without having to deploy
high gain radio antennae needed to communicate through the solar corona. The use of the
monochromatic light enables the observation of the spacecraft almost at the limb of the Sun, as
seen from the ISS. The use of narrow-band filters, coronagraph optics and heterodyne detection
will suppress background light to a level where the solar background is no longer the dominant
noise source. In addition, the short wavelength allows much more efficient links with smaller
apertures, thereby eliminating the need for a deployable antenna. Finally, the use of the ISS
will allow conducting the test above the Earth’s atmosphere – the major source of astrometric
noise for any ground based interferometer. This fact justifies LATOR as a space mission.
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4 Conclusions

The LATOR mission aims to carry out a test of the curvature of the solar system’s gravity field
with an accuracy better than 1 part in 108. In spite of the previous space missions exploiting
radio waves for tracking the spacecraft, this mission manifests an actual breakthrough in the
relativistic gravity experiments as it enables taking full advantage of the optical techniques that
recently became available. Our next steps will be to perform studies of trajectory configuration
and conduct a mission design including the launch vehicle choice trade studies. Our analysis
will concentrate on the thermal design of the instrument, analysis of the launch options and
configuration, estimates of on-board power and weight requirements, as well as analysis of
optics and vibration contamination for the interferometer. We also plan to develop an end-to-
end mission simulation, including a detailed astrometric model and the mission error budget.

The LATOR experiment technologically is a very sound concept; all technologies that are
needed for its success have been already demonstrated as a part of the JPL’s Space Interfer-
ometry Mission development. The concept arose from several developments at NASA and JPL
that initially enabled optical astrometry and metrology, and also led to developing expertise
needed for the precision gravity experiments. Technology that has become available in the last
several years, such as low cost microspacecraft, medium power highly efficient solid state lasers
for space applications, and the development of long range interferometric techniques, makes the
LATOR mission feasible. The LATOR experiment does not need a drag-free system but uses a
geometric redundant optical truss to achieve a very precise determination of the interplanetary
distances between the two micro-spacecraft and a beacon station on the ISS. The interest of
the approach is to take advantage of the existing space-qualified optical technologies leading to
an outstanding performance in a reasonable mission development time. The availability of the
space station makes this mission concept realizable in the very near future; the current mission
concept calls for a launch as early as in 2009 at a cost of a NASA MIDEX mission.

LATOR will lead to very robust advances in the tests of Fundamental physics: this mission
could discover a violation or extension of general relativity or reveal the presence of an additional
long range interaction in the physical law. There are no analogs to the LATOR experiment; it
is unique and is a natural culmination of solar system gravity experiments.

The authors would like to thank Yekta Gursel of JPL for many fruitful discussions. The
work described here was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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Bound on Lorentz and CPT Violating Boost Effects for the Neutron

Ronald Walsworth
Harvard-Smithsonian Center for Astrophysics

A search for a sidereal annual variation in the frequency difference between co-located
129Xe and 3He Zeeman masers sets a limit of approximately 10-27 GeV on the coupling of
the neutron to the time component of a possible background Lorentz and CPT violating
tensor field.
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Tests of Lorentz and CPT Invariance in Space ∗

Matthew Mewes
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Bloomington, IN 47405, U.S.A.

Abstract

I give a brief overview of recent work concerning possible signals of Lorentz
violation in sensitive clock-based experiments in space. The systems under
consideration include atomic clocks and electromagnetic resonators of the type
planned for flight on the International Space Station.

1 Introduction

In this contribution to the proceedings of the 2003 NASA/JPL Workshop on Funda-
mental Physics in Space, I review recent work aimed at understanding possible tests
of Lorentz and CPT symmetries in experiments mounted on space platforms such as
the International Space Station (ISS) [1].

A realistic description of nature at the Planck scale remains a major goal of
theoretical physics. A direct experimental search for Planck-scale effects does not
seem feasible using current technology. However, it has been shown that Planck-scale
theories may lead to small violations in fundamental symmetries such as Lorentz and
CPT covariance in the low-energy effective theory [2]. Such violations might arise out
of the nonlocal properties of string theory. Lorentz and CPT symmetries have also
been studied in the context of noncommuting geometries [3] and supersymmetry [4].

Lorentz transformations are in general comprised of rotations and boosts. CPT
is the combination of the discrete transformations charge conjugation C, space in-
version P and time reversal T. There is a general result known as the CPT theorem
which states that a Lorentz-covariant theory is also covariant under the combined
transformation CPT [5].

In recent years, a number of sensitive experiments have tested Lorentz and CPT
to unprecedented levels [6]. The increased activity in the field has been motivated
in part by the development of a general Lorentz- and CPT-violating Standard-Model

∗Contribution to the proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in
Space, Oxnard, CA, April 2003.
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Extension (SME) [7]. The SME has provided a theoretical framework for many
tests of Lorentz and CPT covariance including experiments involving atomic systems
[8, 9, 10, 11, 12, 13, 14], photons [15, 16, 17, 18, 19], hadrons [20, 21], muons [22],
and electrons [23, 24].

One particularly sensitive class of experiments involves extremely precise clocks
and resonators. A number of experiments of this type are under development to test
relativity principles on the ISS. These include the atomic-clock based experiments
ACES [25], PARCS [26], RACE [27] and a resonant-cavity experiment, SUMO [28].
Some of the best constraints on Lorentz and CPT violation have been achieved in
Earth-based atomic-clock experiments [8, 9, 10, 11, 12]. Recently, similar techniques
have been used in Earth-based experiments involving superconducting microwave cav-
ities [15] and cryogenically cooled optical cavities [16] that probed previously untested
regions of coefficient space. The basic principle behind all these experiments is to
search for variations in frequencies of resonant systems as the Earth rotates. The
space-based versions will look for variations as the satellite orbits the Earth.

Here, I review recent theoretical studies concerning the effects of Lorentz and
CPT violation on atomic clocks [13, 14] and resonant cavities [19] aboard orbiting
platforms such as the ISS. A brief discussion of the SME and the QED limit can be
found in Section 2. A general discussion of the types of signals one expects from
Lorentz violation are described in Section 3. Some results in atomic clocks and in
resonant cavities are given Sections 3.1 and 3.2. Some advantages of space-based
experiments are described in Section 4.

2 Lorentz-Violating QED

The purpose of the SME is the characterization of all possible types of Lorentz vi-
olation in a single local relativistic quantum field theory. Under mild assumptions,
one finds that the form of the theory is restricted to the usual Standard-Model la-
grangian supplemented by terms that consist of Standard-Model field combinations
multiplied by small constant coefficients [7]. Each term must form a scalar under
Lorentz transformations of the observer so that coordinate invariance is satisfied. Of-
ten one restricts attention to renormalizable terms. However, the nonrenormalizable
sector is known to be important at very high energies [29].

The QED limit of the SME serves as a toy-model example of this general frame-
work. It also has physical significance since many systems are accurately represented
by this limit. The renormalizable sector of the QED extension is given by the la-
grangian

L = 1
2
iψ̄Γν

↔
Dν ψ − ψ̄Mψ − 1

4
F µνFµν

−1
4
(kF )κλµνF

κλF µν + 1
2
(kAF )κεκλµνA

λF µν , (1)
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where Dµ is the usual covariant derivative and

Γν = γν + cµνγµ + dµνγ5γµ + eν + if νγ5 + 1
2
gλµνσλµ, (2)

M = m+ aµγ
µ + bµγ5γ

µ + 1
2
Hµνσ

µν . (3)

The small coefficients cµν , dµν , Hµν and (kF )κλµν introduce Lorentz violation and are
CPT even. Meanwhile, eν , f ν , gλµν , aµ, bµ and (kAF )κ are Lorentz violating and CPT
odd. Note that taking these coefficients to zero yields the usual QED.

The experiments considered in this work search for frequency shifts due to the
above coefficients. For atomic clocks, the frequency is typically determined by Zeeman
transitions. The presence of Lorentz and CPT violation results in small shifts in these
transitions that depend on the coefficients in the modified QED associated with each
of the particle species: protons, neutrons and electrons. These coefficients are denoted
aw

µ , bwµ , cwµν , d
w
µν , e

w
ν , fw

ν , gw
λµν , H

w
µν , where the w = p, n, e labels the species [12].

In practice, only certain combinations of coefficients appear. These are commonly
denoted by tilde coefficients b̃w3 , c̃wq , d̃w

3 , g̃w
d , g̃w

q , where I have assumed that the quan-
tization axis is along the 3 direction. As an example of the relationship between the
tilde coefficients and those in Eq. (3) consider be3. It is related to the coefficients in the
QED for electrons by the expression b̃e3 = be3 −med

e
30 +meg

e
120 −He

12. The subscript
3 refers to the quantization axis in the laboratory which in this example was chosen
to be in the 3 direction. The subscripts d and q refer to the dipole and quadrupole
nature of those terms.

A similar tilde decomposition is useful in the photon sector. The presence of
Lorentz violation leads to similar shifts in the resonant frequencies of cavities. When
calculating these shifts it is useful to work with the usual electric and magnetic fields.
In terms ~E and ~B, the (kF )κλµν term in the lagrangian (1) may be written

−1
4
(kF )κλµνF

κλF µν = 1
2
κ̃tr( ~E

2 + ~B2) + 1
2
~E · (κ̃e+ + κ̃e−) · ~E

−1
2
~B · (κ̃e+ − κ̃e−) · ~B + ~E · (κ̃o+ + κ̃o−) · ~B. (4)

The subscripts e, o and tr refer to their O(3) properties. The coefficients κ̃tr, κ̃e+

and κ̃e− are parity even while κ̃o+ and κ̃o− are parity odd. The single coefficient
κ̃tr is rotationally invariant while the others are 3× 3 traceless matrices that violate
rotational symmetry.

The above decomposition is motivated by constraints on birefringence of light
originating from very distant galaxies. Nonozero coefficients κ̃e+ and κ̃o− cause bire-
fringence in light as it traverses empty space resulting in a well defined energy de-
pendence in its polarization. Spectropolarimetric observations of light emitted from
distant radio galaxies places a limit on this effect and leads to constraints on the order
of ∼ 10−32 on κ̃e+ and κ̃o− [19].
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3 Signatures of Lorentz Violation

In the event of appreciable Lorentz violation, we would expect experiments to depend
on their orientation since rotations are a subgroup of Lorentz transformations. The
Lorentz group also contains boosts which implies we would expect velocity dependence
as well. A common approach in tests of Lorentz covariance is to search for these types
of dependences by looking for variations in some observable as the Earth rotates and
orbits the Sun. The rotation of the Earth causes changes in the orientation of the
apparatus, while the orbital motion results in changes in velocity. Note that boost
effects resulting from the change in velocity are typically suppressed by a factor of
β⊕ ∼ 10−4, the velocity of the Earth around the Sun.

To understand how the orientation and velocity dependence is quantified, we must
define at least two frames of reference. The first is the laboratory frame with coordi-
nates (0, 1, 2, 3).1 The clock or cavity is at rest in this frame which simplifies calcu-
lations. In these experiments the Lorentz violation typically leads to frequency shifts
that are linear in the tilde coefficients discussed in the previous section. However,
these tilde coefficients are not necessarily constant since they are associated with the
(0, 1, 2, 3) frame which is not inertial.

To express the frequency shifts in terms of constant coefficients we must choose
an inertial frame of reference. The conventional choice is a standard Sun-centered
celestial equatorial frame with coordinates (T,X, Y, Z). This frame may be considered
inertial for all practical purposes and provides a common set of coefficients which all
experiments can refer to. We can relate the coefficients in the (0, 1, 2, 3) frame to
those in the (T,X, Y, Z) frame by a Lorentz transformation which is time-dependent
since the laboratory frame is in constant motion. For Earth-based experiments this
typically introduces a periodic variation at the Earth’s rotation rate ω⊕ ' 2π/(23 h,
56 min.) and at 2ω⊕, providing a signal for Lorentz violation. Similar variations at
the orbital frequency ωs ' 92 min. and 2ωs occur in experiments aboard the ISS.

3.1 Atomic Clocks in Space

As an example, here I briefly discuss how atomic-clock experiments on the ISS could
be used to search for Lorentz violation. For details I refer the reader to the recent
analyses found in Refs. [13, 14].

A typical clock-comparison experiment consists of two co-located clocks using
different atomic species or operating on different transitions. Each species and tran-
sition responds differently to Lorentz violation. If we compare the signals from the
two clocks we may be able to detect a relative shift in their frequencies. For simplic-
ity, one clock could operate on a transition that is known to be insensitive to Lorentz
violation [12].

1A standard set of frames for Earth-based and satellite-based experiments is defined in Ref. [19].
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Consider a clock at rest in the ISS frame with its quantization axis along the 3
direction. In general, the frequency shift depends on the combinations b̃w3 , c̃wq , d̃w

3 ,
g̃w

d , g̃w
q . The instantaneous values of these coefficients determine the frequency of the

clock at any point in the orbit. Expressing these coefficients in terms of Sun-frame
coefficients reveals time dependence not present in the absence of Lorentz violation.
It is this time dependence that provides a discernible signal for violations in Lorentz
and CPT covariance.

The full expressions relating the coefficients in each frame are rather lengthy.
However, to first order in small velocities, they take the form [14]:

b̃3, d̃3, g̃d = cosωsTs[∼] + sinωsTs[∼]

+βs cos 2ωsTs[∼] + βs sin 2ωsTs[∼] + βs[∼], (5)

c̃q, g̃q = βs cosωsTs[∼] + βs sinωsTs[∼]

+ cos 2ωsTs[∼] + sin 2ωsTs[∼] + [∼], (6)

where each [∼] indicates a different linear combination of the Sun-frame tilde coef-
ficients b̃T , b̃X , b̃Y , b̃Z , g̃T , · · · . The quantities ωs ' 2π/92 min. and βs ' 10−5 are
the frequency and velocity of the ISS orbit and Ts is the time with an appropriately
chosen zero. Note that the 2ωs variations in the vector and dipole coefficients and
the ωs variations in the quadrupole terms are suppressed by βs.

3.2 Resonant Cavities in Space

Also slated to fly aboard the ISS is the SUMO experiment [28]. This experiment
utilizes superconducting microwave oscillators. The frequencies of resonant cavities
are also shifted by Lorentz violation. However, they are sensitive to the photon sector
of the QED extension. A detailed analysis of the effects of the κ̃ coefficients on the
resonant frequencies of cavities can be found in Ref. [19]. The results relevant to
SUMO are summarized below.

The cavities used in SUMO are cylindrical with circular cross section and operate
in the fundamental TM010 mode. Working in a frame where the symmetry axis
coincides with 3 axis, a perturbative calculation finds that the frequency shift is linear
in the coefficient combinations (3κ̃e+ + κ̃e−)33 and κ̃tr. The frequency shift is easily
generalized to a cavity that is at rest in the laboratory but arbitrarily oriented with
its symmetry axis denote by a unit vector N̂ . The result is the fractional-frequency
shift

δν

ν
= −1

4
N̂ jN̂k(3κ̃e+ + κ̃e−)jk − κ̃tr , (7)

where the indices sum over laboratory-frame coordinates, j, k = 1, 2, 3. This expres-
sion is valid in any laboratory frame at rest with respect to the cavity.

In order to fully understand the effects of Lorentz violation on a cavity in orbit,
we must transform the coefficients to the Sun-centered frame. To first order in the
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boost velocity, the answer can be written

δν

ν
= −1

4
N̂ jN̂kRjJRkK(κ̃e′)JK − 1

2
(δjk + N̂ jN̂k)RjJRkKεJPQβQ(κ̃o′)KP − κ̃tr , (8)

where for convenience we define

(κ̃e′)JK = 3(κ̃e+)JK + (κ̃e−)JK , (κ̃o′)JK = 3(κ̃o−)JK + (κ̃o+)JK . (9)

The uppercase indices represent the Sun-centered coordinates, J,K = X, Y, Z. The
matrix R is the rotation between the two frames and β is the velocity of the laboratory
in the Sun frame. Inserting the explicit time-dependent expressions R and β leads to
periodic variations similar to the atomic-clock case.

A number of different experiments are possible. For example, a cavity could be
compared to an atomic clock. The clock could be used as reference by choosing a
transition that is insensitive to Lorentz violation. This setup would only be sensitive
to violations in the photon sector. In contrast, operating the clock on a transition
sensitive to Lorentz violation would provide sensitivity to combinations of photon and
fermion coefficients.

It is also possible to construct cavities that are insensitive to given tilde coefficients.
For example, geometries exist that support modes that are insensitive to κ̃e−. With
the constraints from birefringence, this leaves only the β suppressed variations due
to κ̃o+. Therefore, cavities might serve as reference frequencies for atomic clocks.

Traditionally, two cavities oriented at right angles are used in tests of relativity.
This method could also be implemented in space-based experiments. In two-cavity
experiments, the quantity of interest is normally the beat frequency obtained by
combining their signals. On the ISS, this will take the form

νbeat

ν
≡ δν1

ν
− δν2

ν
= As sinωsTs +Ac cosωsTs +Bs sin 2ωsTs +Bc cos 2ωsTs + C, (10)

where the amplitudes As, Ac, Bs, and Bc are linear combinations of the tilde coef-
ficients. These are typically rather cumbersome [19] but depend on the orientation
of the cavity pair in the laboratory and on the orientation of the orbital plane with
respect to the Sun-centered frame.

It can be shown that orienting a cavity with N̂ in the orbital plane maximizes
the sensitivity to the second harmonics, at leading order in β and that orienting a
cavity so that N̂ is 45◦ out of the plane maximizes sensitivity to the first harmonics.
Therefore, a sensible configuration might have one cavity in the orbital plane and one
45◦ out of it.

4 Advantages of Space-Based Experiments

There are several advantages to space-based experiments over their ground-based
counterparts. A major advantage stems from the relatively short orbital period of the
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Coefficient Birefringence Microwave Optical
(κ̃e+)JK -32 * *
(κ̃o−)JK -32 * *

(κ̃e−)XX − (κ̃e−)Y Y n/a -13 -15
(κ̃e−)ZZ n/a - -

(κ̃e−)XY , (κ̃e−)XZ , (κ̃e−)Y Z n/a -13 -15
(κ̃o+)XY , (κ̃o+)XZ , (κ̃o+)Y Z n/a -9 -11

κ̃tr n/a - -

Table 1: Existing bounds for cosmological birefringence [19], microwave cavities [15]
and optical cavities [16]. A star indicates that constraints probably exist. However,
to date, no analysis has included these coefficients.

ISS. In Earth-based experiments, the relevant period is one sidereal day. Comparing
this to the 92 min. period of the ISS orbit implies that an experiment on the ISS
could acquire a comparable dataset in approximately one-sixteenth the time.

Another advantage arises from the properties of the ISS orbital plane. For fixed
Earth-based experiments, there are combinations of coefficients such as b̃Z and (κ̃e−)ZZ

that do not contribute to sidereal variations and are therefore unobservable.2 This is
due to the constancy of the Earth’s rotational axis which is fixed and points in the
Ẑ direction. The analogous direction in the case of the ISS is given by its orbital
axis. However, this axis precesses about the Ẑ axis at an angle of approximately 52◦,
implying that there is no analogous set of inaccessible coefficients.

One last major advantage is due to β suppressed terms like those that appear in
Eqs. (5) and (6). Note that similar β⊕ and βs suppressed terms appear in the [∼]
combinations of Eqs. (5) and (6) and in the amplitudes of Eq. (10). These terms
are due to the changing velocity of the ISS in the Sun frame and introduce new
time dependences and sensitivities to coefficient combinations that do not appear
when considering rotational effects alone. Analogous terms do arise in Earth-based
experiments. However, the terms that introduce new time dependences are suppressed
by the smaller laboratory velocity βL ∼< 1.5× 10−6 � βs.

5 Summary and Discussion

Table 1 lists the approximate base-10 logarithm of existing constraints on Lorentz
violation in the photon sector. Ground-based experiments involving microwave [15]
and optical [16] cavities have measured all components of κ̃e− and κ̃o+ except (κ̃e−)ZZ .
A space-based experiment could immediately access the unconstrained coefficient
(κ̃e−)ZZ . Improved sensitivities are also expected. It has been estimated that SUMO

2Coefficients of this type can be accessed with the use of a turntable as in Ref. [24].
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Coefficient Proton Neutron Electron

b̃X , b̃Y -27[-27] [-31] -27[-29]

b̃Z -27 - -27[-28]

b̃T -23 - -23
g̃T -23 - -23

H̃JT -23 - -23

d̃± -23 - -23

d̃Q -23 - -23

d̃JK -23 - -23

d̃X , d̃Y -25[-25] [-29] -22[-22]

d̃Z -25 - -22
g̃DX ,g̃DY -25[-25] [-29] -22[-22]
g̃DZ -25 - -22
g̃JK -21 - -18
g̃c -23 - -23
c̃TJ -20 - -
c̃− -25 [-27] -
c̃Q -25 - -

c̃X , c̃Y -25 [-25] -
c̃Z -25 [-27] -
c̃TJ -21 - -
g̃− ?[?] [?] -
g̃Q ? - -

g̃TX , g̃TY ?[?] [?] -
g̃TZ ?[?] [?] -

Table 2: Estimated sensitivity to tilde coefficients for ISS experiments with 133Cs and
87Rb clocks taken from Ref. [14]. Existing bounds [8, 9, 10, 11, 24] are shown in
brackets. A star indicates possible sensitivity in realistic nuclear model.
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may be able to achieve sensitivity at the level of 10−17 [15].
The above discussion could can also be applied to optical-cavity experiments.

Currently, the most precise measurements of κ̃e− and κ̃o+ are from an optical-cavity
experiment [16] and space-based versions such as those proposed for the OPTIS ex-
periment [30] could also yield interesting results.

Note that the rotationally invariant component κ̃tr is also unconstrained. This is
because, at order β, it results in unobservable constant shifts. However, it becomes
important at order β2 and could be accessed at interesting levels in experiments
involving larger boosts or better sensitivity.

Table 2 lists the estimates given in Ref. [14] for the sensitivities of 133Cs and
87Rb clocks on the ISS. The brackets indicate measurements from current ground-
based experiments. The table illustrates the main advantage of space-based clock-
comparison experiments. The additional freedom in the motion of the ISS results in
access to a much larger portion of the coefficient space.

Future clock-comparison experiments in space will probe regions of coefficient
space difficult to access on Earth. They will do it more quickly and perhaps with
better sensitivity than their ground-based counterparts.
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Kostelecký, Phys. Rev. Lett. 80, 1818 (1998); Phys. Rev. D 61, 016002 (2000);
64, 076001 (2001); N. Isgur et al., Phys. Lett. B 515, 333 (2001).

[22] V.W. Hughes et al., Phys. Rev. Lett. 87, 111804 (2001); R. Bluhm et al., Phys.
Rev. Lett. 84, 1098 (2000).

[23] H. Dehmelt et al., Phys. Rev. Lett. 83, 4694 (1999); R. Mittleman et al., Phys.
Rev. Lett. 83, 2116 (1999); G. Gabrielse et al., Phys. Rev. Lett. 82, 3198 (1999);
R. Bluhm et al., Phys. Rev. Lett. 82, 2254 (1999); Phys. Rev. Lett. 79, 1432
(1997); Phys. Rev. D 57, 3932 (1998).

[24] B. Heckel, in Ref. [6]; L.-S. Hou, W.-T. Ni, and Y.-C.M. Li, Phys. Rev. Lett.
90, 201101 (2003); R. Bluhm and V.A. Kostelecký, Phys. Rev. Lett. 84, 1381
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[29] V.A. Kostelecký and R. Lehnert, Phys. Rev. D 63, 065008 (2001); V.A. Kost-
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ABSTRACT

The orbital motion of an ultra-drag-free satellite, such as the large test body of the
SEE (Satellite Energy Exchange) satellite, known as the "Shepherd," may possibly
provide the best test for time variation of the gravitational constant G at the level of
parts in 1014.  Scarcely anything could be more significant scientifically than the
incontestable discovery that a fundamental "constant" of Nature is not constant.  A
finding of non-zero (G-dot)/G would clearly mark the boundaries where general
relativity is valid, and specify the onset of new physics.  The requirements for
measuring G-dot at the level proposed by SEE will require great care in treating
perturbation forces.  In the present paper we concentrate on the methods for dealing
with the gravitational field due to possible large manufacturing defects in the SEE
observatory.  We find that, with adequate modeling of the perturbation forces and
cancellation methods, the effective time-averaged acceleration on the SEE Shepherd

will be ~10
-18 

g (10
-17 

m/s
2
).

1.  Introduction

A thorough understanding of the gravitational force—especially a satisfactory quantum theory of
gravity—is the missing link in efforts to achieve a satisfactory unification theory.  The question of
whether the gravitational constant G is truly constant or whether it might be time-varying is of
particular importance to modern theories of gravitation and, hence, to efforts to achieve a
satisfactory unification theory.  A striking feature of recent theories of quantum gravity and string
theory is that they cannot retain a constant G, but rather require various secular rates of change.
Their predictions of (G-dot)/G are typically ~10-13/yr to ~10-11/yr. Moreover, a test of (G-dot)/G is
one of the very few ways of discriminating among various modern theories [see, for example,
Marciano, 1984; Bronnikov, Ivashchuk & Melnikov, 1988; Melnikov, 1994; Drinkwater et al. 1999;
and Ivashchuk & Melnikov, 2000].

It was of course Dirac’s original conjecture about variation of the fundamental constants,
summarized in his “Large Numbers Hypothesis,” that opened the door to initial speculations in
this area, and his original concept of two metrics (one for “mechanical,” i.e., orbital processes and
another for “atomic” processes) still echoes today in the theories discussing extra dimensions.  By
roughly mid-century, the scalar-tensor theories of gravity were essentially the first to make
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quantitative predictions of a non-zero (G-dot)/G.  The essential feature was that the gravitational
field would have a secular change .  Such theories, particularly that of Brans and Dicke, were hotly
debated within the context of general relativity, and eventually gave way to increasingly precise
experimental confirmations of general relativistic predictions.  However, perhaps the most striking
thing about the debate at that point in time was that a non-zero (G-dot)/G lay outside of the
predictions of general relativity; hence, if some evidence for it could be discovered, then Einsteinian
geometrodynamics would be incomplete, at best.

Although a number of different theoretical models have subsequently been proposed,
experimental/observational evidence is still not sufficiently precise to discriminate among the
predictions of different theories with respect to G-dot and other variables and, hence, to assess the
validity of alternative models.

The question of the variability of G has taken on increasing urgency in recent years.  One important
new motivation for the measurement of (G-dot)/G has arisen within the context of attempts to reveal
the presence of a dynamical background energy in the universe, the so-called “dark energy” or
quintessence.”  Chiba (1999), for instance, has pointed out that a dynamical coupling of the
quintessence field to the gravitational field can give rise to a (G-dot)/G effect, and he has used the
existing experimental values to constrain the size of such a coupling.  For a review, see Uzan
(2003).

The best tests of G-dot at present are observational tests from Lunar Laser Ranging (LLR). The
basic approach of LLR analysis is to disentangle a number of different effects—Newtonian,
Einsteinian, and putative post-Einsteinian—relating to the motion of the Moon in search of putative
post-Einsteinian effects, such as the Nordtvedt effect, other Universal Free Fall violations, and non-
zero G-dot  [Nordtvedt, 1996, 2002, & 2003].  To date no violations have been found.  The present
limit on G-dot is ~10-12/yr [Pitjeva, 1997; Williams et al., 2001; Williams et al., in press].

There is now reason to believe that the orbital motion of a near-Earth satellite can be made so nearly
drag free by design that it may effectively play the role of the Moon and provide a test for time
variation of the gravitational constant G at the level of parts in 1014—about two orders of magnitude
beyond both the current observational results and the predictions of most current theories.  To wit,
we believe that the large test body of the SEE (Satellite Energy Exchange) satellite [Sanders &
Deeds, 1992 and 1993, and Sanders et al., 1993, and Sanders & Gillies 1998a], known as the
"Shepherd," could play this role.  The methods for a test of G-dot by SEE are closely analogous to
those of LLR, with the notable exception that LLR is entirely observational, while the use of a drag-
free artificial satellite essentially comprises a controlled experiment with very fine accuracy.

There has never been a credible laboratory measurement of (G-dot)/G (using test masses in a
controlled situation) at cosmologically interesting levels of precision.  Although there have been
perhaps a dozen laboratory experiments proposed to measure (G-dot)/G, none of them has been
successfully carried out at cosmologically significant levels of interest.  The existing data through
1997 are reviewed by Gillies (1997).

In short, it would be very significant scientifically to discover that a fundamental "constant" of
Nature is not constant.   Nothing could do more to invigorate interest in new theories, most of
which do allow for time variation of G and other fundamental "constants."  A finding of non-zero
(G-dot)/G would of course require modification of general relativity, since it assumes a constant
value of G.  More broadly, this would clearly mark the boundaries where general relativity is valid,
and specify the onset of new physics.  The very precise experimental data to be provided by a SEE
mission augurs for significant advances in gravitation theory, with concordant implications for
unification theory.
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3. Experimental method for determining (G-dot)/G on the SEE mission

The experimental approach to measuring (G-dot)/G by a SEE mission is described in a previous
article [Sanders et al., 2000].  The main idea is to use the orbital period as a clock running in
comparison with atomic clocks and to infer a possible change in G from the dependence of the
period on G.  Thus, unless the orbital period is constant except for various known and/or
characterizeable perturbations, G will be shown to be changing (strictly speaking, we can look only
for changes in the product MEG).  We have shown that the accuracy with which (G-dot)/G may be
measured is limited by (1) available position resolution if the observation time is less than one year
and (2) accuracy in accounting for perturbations if the observation time is greater than one year
[Sanders et al., 2000].  The capability for measuring time will not be a limiting factor in measuring
(G-dot)/G, assuming the next generation of atomic clocks is available.

4.  Expected Error Budget for G-dot Determination by SEE

Great caution is required in satellite design to make the Shepherd as nearly drag-free as possible.
The various perturbing effects that are thought to have the potential to contribute to error in the
measurement of G–dot on a SEE mission are being evaluated.  The status of this evaluation is
shown in Table 1 [after Sanders et al., 2000].   

Table 3.  Error Budget for G-dot (One-Year and Four-Year Observation Periods)

Error Source Average Force

(x10
-17 N)

δ(G-dot/G)

(x10
-15

)

Brief Comments
(details below)

1 yr 4 yrs

Tracking error NA 15.6 2.0 GPS/SLR accuracy = 1 cm

Timekeeping error NA ~1 ~1 Next generation clocks

Blackbody radiation 10.0 8.6 4.3 ∆Θ < 0.1 mK

Electrostatic forces <15 <10 <5 Surface potential < 6.4 mV

Lorentz forces small zero zero Perpendicular to velocity

Earth's field <1.4 <0.9 <0.5 With GRACE or equivalent

Capsule mass defects 22.2 15 7.4 Many defects ~10 mg

Gravity of particle <0.22 <0.15 <0.08 Newton's 3rd law

Shepherd's moments small small? small? Not evaluated yet

Outgassing jets small small small Obviate by baking

Total NA 25 10

The (G-dot)/G error budget is summarized by Figure 1 below.  The top row from Table 1 (tracking
error) appears in Figure 1 as a line that decreases as t-3/2.  The second row (timekeeping) appears as
the horizontal line at 10-15/yr.  The collective effect of all other items in Table 1 appears in Figure
1as the line that decreases as t-1/2.   The total error in Figure 1 is shown as the hyperbola-like curve,
which exceeds 10-13/yr if the observation time is a few months, and which falls below 10-14/yr when
the observation time is more than 4 years.
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          Figure 1 
Error Budget for G/G 
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5.  Perturbations--Internal Gravitational Field of SEE Observatory

In this section we focus on the effects due to the gravitational field of the SEE observatory itself.
The original article on SEE pointed out that it is possible, in principle, to distribute the mass of any
closed container such that the gravitational field on the interior is zero [Sanders & Deeds, 1992;
U.S. Patent No. 5,427,335, June 27, 1995].  In practice, the desired distribution cannot of course be
realized exactly, and it is therefore necessary to develop strategies to cope with the “mass defects”
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which will inevitably exist [Sanders & Gillies, 1996a; Sanders & Gillies, 1996a; Sanders & Gillies,
1996b; Sanders & Gillies, 1997; Sanders & Gillies, 1998b].  We have previously investigated the
perturbations due to a large number of small, randomly-located point-like mass defects in the side
walls of the SEE experimental chamber [Corcovilos & Gadfort, 1998; Sanders et al., 1999 and
Sanders et al., 2000].  In the present paper we consider the perturbation due to a single large mass
defect in the end wall of the SEE experimental chamber.

Detailed simulations are of course required to validate data-reduction methods for disentangling the
effects of various combinations of mass defects.  The original SEE paper pointed out that a Fourier-
Bessel expansion of the potential was suitable for this purpose [Sanders & Deeds, 1992], and we
subsequently presented the explicit form of the off-axis coefficients [Antonov, 1999].  The role of
the spatial Fourier spectrum for treating the potential on axis is illustrated in Sanders et al. (1999).

Although comprehensive approaches such as these will be required for reducing the data from the
actual mission, elementary calculations of special cases are very helpful for providing insight into
the meaning of comprehensive treatments.  In this section we consider one such special case—extra
mass at one end of the experimental chamber—and we carry out elementary calculations to illustrate
the impact on the G-dot determination.

It is necessary to distinguish among three stages in the treatment of perturbations due to mass
defects:

(A)  How large the mass-defect perturbations actually are.   This is essentially an
issue of manufacturing tolerances.

(B)  How accurately these perturbations can be modeled or mapped, We treat this
under the heading of "self calibration" in Sanders & Gillies (1996).  The error
in this modeling is called the “unmodeled force.”

(C) The extent to which the effects of mass defects can be canceled, by varying the
orientation of the capsule and the position of the Shepherd, and then averaging
over these different configurations.  The departure from perfect cancellation is
called the “uncanceled force.”

These distinctions are discussed in Sanders et al. (2000) in the sections titled “The drag-free
satellite concept.” The concept of Almost-Zero Time-Averaged Drag (AZTAD) satellites,
introduced here, is central to SEE’s G-dot determination.

We now demonstrate that a very large defect will not be deleterious, provided the SEE observatory
is calibrated (“B” above) and the unmodeled force is further suppressed by the cancellation
methods (“C” above).

For this illustration we suppose that the thickness defect in one endplate of the observatory chamber
is manufactured 50 microns too thick (an enormous error!).  We trace the implications of this mass
defect as if the chamber were otherwise perfectly manufactured (i.e., the SEE observatory would
have zero internal field if the thickness of the endplate were correct).  The distance of the Shepherd
from the heavier endplate is typically ~1 m, so it will experience a perturbation force of about

F  =  GMm/r
2
  ≅  1.4x10-9 N

Here we have taken the radius of the endplate as 50 cm and its density as 2700 kg/m
3
, so the mass

defect m is 106 g.  We take the mass of the Shepherd as M=200 kg.

This perturbative force will of course be in the forward direction when the heavy end is in the front
end of the observatory, and the force will point backward when the heavy end is in the back.  In
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either case, the force can be measured by observing the relative motion of the Shepherd and a
Particle.  The relative acceleration of the Shepherd and Particle will be greater when the Shepherd is
near the heavy endplate than when it is near the “good” endplate.  From observations of such
differences, the potential field of the SEE observatory can be mapped.  For simplicity we assume
that the Particle is located far from either end, so that the interaction between the Particle and the
endplate defect may be neglected.

When the Shepherd is near the "heavy" endplate, it experiences an additional acceleration of F/M ≅

7.0x10
-12

 m/s
2
 that does not occur when it is near the "good" endplate.  Therefore the size of the

net impact of the perturbation during a four-hour observation, may be roughly estimated as a
differential displacement equal to

1/2 a t
2
= 7.2x10

-4
 m

when the Shepherd is near the heavy endplate.

Such a large difference (0.72 mm) would of course be an obvious effect.  The question is, just how
accurately can it be measured?  This will determine how accurately the potential field of the capsule
can be mapped (modeled).  The SEE experimental design calls for the measurement accuracy of the
relative positions of the test bodies to be known to less than a micron.  A 1-micron difference in,
say, four hours of observation (two orbital revolution) corresponds to an acceleration difference δa

equal to 1x10
-14

 m/s
2
 (i.e., 1/2 δa t

2
 = 1x10

-6
 m).  In turn, this corresponds to a 70-nm error in the

thickness of the end wall.  That is, an additional 70 nm (150 mg) in the end wall would cause the
test-body separation to increase or decrease by an additional 1 micron, which is large enough to be
measurable.  Thus, the ability to detect test-body positions to <1 micron is equivalent to being
sensitive to a thickness difference between the two end walls with a resolution of <70 nanometers
on the basis of observation of the Particle and Shepherd for four hours near the heavy end and four
hours near the good end.

The above calculations demonstrates that—remarkably—although the defect in the end-wall
thickness may be very large (50 microns), the resulting difference in the potential may be detected
with a resolution equivalent to ~70 nm in endplate thickness.

Moreover, we note that this result is not a function of the size of the defect.  The reader may easily
demonstrate this fact by repeating the above algebra with a different assumption about the
manufacturing defect (for example, a 5-micron or 500-micron error in thickness); the result will be
that the detection resolution would be unchanged (still ~70 nm).

The discussion to this point entails effects of modeling (mapping, calibrating) of the perturbation
forces, not cancellation.

Cancellation procedures can result in a further dramatic reduction in the actual time-averaged force
on the Shepherd, which is what affects the G-dot measurement.   Here is the cancellation procedure:
Consider the axial component of the un-modeled force along any line parallel to the axis of the SEE
observatory.  This function may be of course decomposed into the sum of two functions—one even
and one odd—and the choice of origin is arbitrary.  For any two points located symmetrically with
respect to the origin, signs of the odd part of the force are opposite, while those of the even part are
the same.  To say that the sign of the even part remains the same means that, if the even force on a
test body is forward when it is in one end of the capsule, then the force will also be forward when
the test body is in the opposite end of the capsule.  Now, if the capsule is “flipped”—turned 180
degrees, so that the back end becomes the front end—this force will reverse direction:  the even
force on the test body will now be backwards (in both ends of the capsule).  The odd part of the
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force of course still switches sign when the Shepherd moves from one end of the capsule to the
other, regardless of the orientation of the observatory.  We apply these simple principles to the SEE
Shepherd.  The two orientations of the SEE observatory and the two positions of the test body yield
"Four Flight Configurations" here.  The cartoon figure below illustrates the four configurations.

Figure 2
The Four Flight Configurations
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Obviously the sum of the even and odd forces over the Four Flight Configurations is exactly zero.
In practice it will not be possible to control the position of the Shepherd exactly, so the two
positions will not be quite symmetrically located with respect to the origin.  We estimate that it will
be easy to control the Shepherd to within a centimeter at all times and to control its average position
to within a millimeter.

A point of secondary importance is that the Shepherd may be intentionally moved about over a
“roaming interval” ~1 or 2 meters in length.  There are a number of reasons why this procedure
would be more desirable than trying to pin it to a single location at each end.  One important benefit
of the roaming-interval approach is that it avoids the possibility of accidentally choosing the
location at a point where the un-modeled force is changing rapidly.  That is, the roaming approach
averages over such sensitive locations and less-sensitive locations.

We have previously shown that the time-averaged force on the Shepherd will typically be  ~3 orders
of magnitude smaller than the un-modeled force, assuming the average position of the Shepherd can
be controlled to within a few millimeters [Sanders et al., 1999 and Sanders et al., 2000].  This result
was for the case of a large number of small point-mass defects in the walls of the SEE observatory.
We now demonstrate that the same cancellation technique is also effective in the case of a large
mass defect in the end wall.

The Shepherd will be maneuvered so that it spends equal times in the two Flight Configurations that
locate it near the “heavy” endplate, and also equal times in the other two Flight Configurations, in
which the Shepherd is near the “good” end of the chamber.

As indicated above, if the mass defect is m=106 g, the resulting perturbation would be about

F  ≅  GMm/r
2
  ≅  1.4x10-9 N

This is the approximate actual perturbation force.

We would observe this by seeing that the relative acceleration of the two test bodies would be
greater when the Shepherd were closer to the "heavy end of the capsule.  However, we demonstrated
above that, as a consequence of limitations in position-measurement capability, we would make an
error in modeling this force that is equivalent to a mass defect of δm ~ 150 mg (thickness ~70 nm
thickness).  Therefore, the error in the force map would be

δF  =  G M δm/r
2
  ≅  2x10-12 N

This is the un-modeled force (error in the force calibration).

Now comes the cancellation:  The un-modeled force error will be in the forward direction in two
flight configurations and in the backward direction in the other two flight configurations.  The time
average, taken over all Four Flight Configurations, is exact cancellation in principle.  The
cancellation will not be exact in practice because the effective distance r of the Shepherd from the
mass defect cannot be controlled exactly.  We assume that the average positioning error is 1 mm (a
large value compared with the accuracy of the measurement system).  Thus, if r~1 m, we choose
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r1=1.000 m and r2=1.001 m.   Therefore the difference between the resulting forces, as computed
from the force map, is two or three orders of magnitude smaller than the un-modeled force, namely:

δF1 - δF2  =  G M δm x (1/r1
2
 - 1/r2

2
) ≅ 4x10-15 N

This is the un-cancelled force.

The corresponding un-cancelled acceleration is obtained by dividing out the Shepherd mass, M
(200 kg).  The result is

a ≅ 2x10-17 m/s
2
 ≅ 2x10-18 g

That is, the time-averaged drag on the Shepherd is ~10-18g, ceteris paribus.

To avoid misunderstanding, we must emphasize that the above is only a series of illustrative
elementary calculations about a single mass defect, viz. a defect in the thickness of one end wall.
This approach is useful for obtaining order-of-magnitude results, but it is no substitute for a
comprehensive analysis of the combined impact of multiple mass defects, including large numbers
of randomly distributed mass defects, as described in Sanders et al. (1999).  Our results for
multiple mass defects are summarized in Figure 3 of Sanders et al. (1999) and the accompanying
text.

6.  Summary

These results, plus the calculation above of the impacts of a single large defect, show that time-
averaged force on the Shepherd will be remarkably small, given proper treatment of the
perturbations, even if the perturbations are relatively large.  This is a major accomplishment under
our NASA Fundamental Physics in Microgravity grant.  We regard it as an important advance in
experimental gravitation.

7.  Discussion in Q&A Period

Question (Ho-Jung Paik):  Since the unmodeled force on the Shepherd due to mass defects is
constant—has no time variation—how can it have a random-walk character?  How can this
contribution to the total unmodeled force continue to decrease with time [as t-1/2], as shown in
Figure 1?

Answer (during session):  I believe you are correct.

Later answer:  Although it is true in principle that the force at any given point in the experimental
chamber due to mass defects is not time-varying, the Shepherd will not be located at exactly the
intended positions (if it were, then exact cancellation would result, so the time-averaged force would
indeed be constant—in fact, zero).  Rather, the actual force on the Shepherd will be time-varying
because of positioning errors, and this effect is correctly described by a random walk, so the force
will vary as t-1/2, as shown in Figure 1.
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